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ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INFORMÁTICOS
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Victor A. Villagrá, Profesor Titular de Universidad - Universidad Politécnica
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Resumen de la tesis

Esta tesis se centra en el análisis de dos aspectos complementarios de la ciberdelin-
cuencia (es decir, el crimen perpetrado a través de la red para ganar dinero).
Estos dos aspectos son las máquinas infectadas utilizadas para obtener beneficios
económicos de la delincuencia a través de diferentes acciones (como por ejemplo,
clickfraud, DDoS, correo no deseado) y la infraestructura de servidores utiliza-
dos para gestionar estas máquinas (por ejemplo, C & C, servidores explotadores,
servidores de monetización, redirectores).

En la primera parte se investiga la exposición a las amenazas de los orde-
nadores victimas. Para realizar este análisis hemos utilizado los metadatos con-
tenidos en WINE-BR conjunto de datos de Symantec. Este conjunto de datos
contiene metadatos de instalación de ficheros ejecutables (por ejemplo, hash del
fichero, su editor, fecha de instalación, nombre del fichero, la versión del fichero)
proveniente de 8,4 millones de usuarios de Windows. Hemos asociado estos
metadatos con las vulnerabilidades en el National Vulnerability Database (NVD)
y en el Opens Sourced Vulnerability Database (OSVDB) con el fin de realizar
un seguimiento de la decadencia de la vulnerabilidad en el tiempo y observar la
rapidez de los usuarios a remiendar sus sistemas y, por tanto, su exposición a
posibles ataques.

Hemos identificado 3 factores que pueden influir en la actividad de parches
de ordenadores victimas: código compartido, el tipo de usuario, exploits. Pre-
sentamos 2 nuevos ataques contra el código compartido y un análisis de cómo el
conocimiento usuarios y la disponibilidad de exploit influyen en la actividad de
aplicación de parches. Para las 80 vulnerabilidades en nuestra base de datos que
afectan código compartido entre dos aplicaciones, el tiempo entre el parche libera
en las diferentes aplicaciones es hasta 118 das (con una mediana de 11 das)

En la segunda parte se proponen nuevas técnicas de sondeo activos para de-
tectar y analizar las infraestructuras de servidores maliciosos. Aprovechamos
técnicas de sondaje activo, para detectar servidores maliciosos en el internet.
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Empezamos con el análisis y la detección de operaciones de servidores explota-
dores. Como una operación identificamos los servidores que son controlados por
las mismas personas y, posiblemente, participan en la misma campaa de infección.
Hemos analizado un total de 500 servidores explotadores durante un perodo de 1
ao, donde 2/3 de las operaciones tenian un nico servidor y 1/2 por varios servi-
dores.

Hemos desarrollado la técnica para detectar servidores explotadores a difer-
entes tipologas de servidores, (por ejemplo, C & C, servidores de monetización,
redirectores) y hemos logrado escala de Internet de sondeo para las distintas cat-
egoras de servidores maliciosos. Estas nuevas técnicas se han incorporado en una
nueva herramienta llamada CyberProbe. Para detectar estos servidores hemos
desarrollado una novedosa técnica llamada Adversarial Fingerprint Generation,
que es una metodologa para generar un modelo nico de solicitud-respuesta para
identificar la familia de servidores (es decir, el tipo y la operación que el servidor
apartenece). A partir de una fichero de malware y un servidor activo de una
determinada familia, CyberProbe puede generar un fingerprint válido para de-
tectar todos los servidores vivos de esa familia. Hemos realizado 11 exploraciones
en todo el Internet detectando 151 servidores maliciosos, de estos 151 servidores
75% son desconocidos a bases de datos publicas de servidores maliciosos.

Otra cuestión que se plantea mientras se hace la detección de servidores mali-
ciosos es que algunos de estos servidores podran estar ocultos detrás de un proxy
inverso silente. Para identificar la prevalencia de esta configuración de red y
mejorar el capacidades de CyberProbe hemos desarrollado RevProbe una nueva
herramienta a traves del aprovechamiento de leakages en la configuración de la
Web proxies inversa puede detectar proxies inversos. RevProbe identifica que el
16% de direcciones IP maliciosas activas analizadas corresponden a proxies inver-
sos, que el 92% de ellos son silenciosos en comparación con 55% para los proxies
inversos benignos, y que son utilizado principalmente para equilibrio de carga a
través de mltiples servidores.
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Abstract of the dissertation

In this dissertation we investigate two fundamental aspects of cybercrime: the
infection of machines used to monetize the crime and the malicious server infras-
tructures that are used to manage the infected machines.

In the first part of this dissertation, we analyze how fast software vendors ap-
ply patches to secure client applications, identifying shared code as an important
factor in patch deployment. Shared code is code present in multiple programs.
When a vulnerability affects shared code the usual linear vulnerability life cycle
is not anymore effective to describe how the patch deployment takes place. In
this work we show which are the consequences of shared code vulnerabilities and
we demonstrate two novel attacks that can be used to exploit this condition.

In the second part of this dissertation we analyze malicious server infrastruc-
tures, our contributions are: a technique to cluster exploit server operations, a
tool named CyberProbe to perform large scale detection of different malicious
servers categories, and RevProbe a tool that detects silent reverse proxies.

We start by identifying exploit server operations, that are, exploit servers
managed by the same people. We investigate a total of 500 exploit servers over
a period of more 13 months. We have collected malware from these servers and
all the metadata related to the communication with the servers. Thanks to this
metadata we have extracted different features to group together servers managed
by the same entity (i.e., exploit server operation), we have discovered that 2/3 of
the operations have a single server while 1/3 have multiple servers.

Next, we present CyberProbe a tool that detects different malicious server
types through a novel technique called adversarial fingerprint generation (AFG).
The idea behind CyberProbe’s AFG is to run some piece of malware and
observe its network communication towards malicious servers. Then it replays
this communication to the malicious server and outputs a fingerprint (i.e. a
port selection function, a probe generation function and a signature generation
function).
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Once the fingerprint is generated CyberProbe scans the Internet with the
fingerprint and finds all the servers of a given family. We have performed a total
of 11 Internet wide scans finding 151 new servers starting with 15 seed servers.
This gives to CyberProbe a 10 times amplification factor. Moreover we have
compared CyberProbe with existing blacklists on the internet finding that only
40% of the server detected by CyberProbe were listed.

To enhance the capabilities of CyberProbe we have developed RevProbe,
a reverse proxy detection tool that can be integrated with CyberProbe to
allow precise detection of silent reverse proxies used to hide malicious servers.
RevProbe leverages leakage based detection techniques to detect if a malicious
server is hidden behind a silent reverse proxy and the infrastructure of servers
behind it. At the core of RevProbe is the analysis of differences in the traffic
by interacting with a remote server.
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1
Introduction

Recent years have seen the rise of cybercrime [1], i.e., crime realized through
computers and networks whose goal is to make money. The proliferation of
cybercrime is likely due to the increasing profitability that derives from it [2, 3].

There exist many types of cybercrime such as clickfraud, distributed denial-
of-service (DDoS), spam, targeted attacks, information theft, and identity theft.
Cybercrime operations often comprise 3 main components: the group of peo-
ple that organize and manage the crime, the infected victim machines used to
monetize the operation through different malicious actions (e.g., perform click-
fraud, launch DDoS, send spam), and the servers used to manage those infected
machines. This dissertation focuses on two elements of cybercrime operations:
infected victim machines and malicious server infrastructures.

There are two main methods to infect victim machines used for monetization:
social engineering and exploitation of software vulnerabilities. In social engineer-
ing, the goal is to convince the user to install a piece of malware on his machine.
For example, an attacker may rename a piece of malware as a benign software
(e.g., photoshop.exe) and make it available through peer-to-peer networks like
Bittorrent [4]. One of the most important countermeasures against social engi-
neering is user education [5].

In this dissertation we focus on exploitation of software vulnerabilities. The
most effective countermeasure against vulnerabilities are software patches. How-
ever, there are factors that limit the effectiveness of software patches. For ex-
ample, the different policies to manage patch deployment (e.g., semi-automatic
or manual), the presence of multiple versions of the same program in the system
(i.e., shared code), user behavior, and user education.

Once a vulnerability is exploited, depending of the privilege the exploit ob-
tains, the attacker can execute arbitrary code on the victim machine, which
enables the installation of malware. The most frequently used methods to install
malware on remote clients through vulnerability exploitation are called drive-by
downloads [6]. In a drive-by download a user follows a web link that redirects
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its browser through potentially multiple websites and eventually ends on a web-
site that exploits a vulnerability on the user’s browser and drops malware on the
user’s machine. Analyzing victim machines patch deployment activity, is funda-
mental to understand the exposure of these machines to threats, how fast their
users are reacting to potential risks, and which factor are slowing the patching
process.

When the infection process is completed, the infected hosts need to be man-
aged remotely, which is typically achieved through servers. These servers commu-
nicate, host, and store vital information for the cybercrime operation. Different
types of servers are used such as command and control (C&C) servers to control
networks of infected computers, monetization servers used by ransomware to col-
lect payments from the victims [7], and redirectors used for anonymity. Detecting
malicious server infrastructures is crucial to disrupt and take-down cybercrime
operations, and helps to identify the people behind a cybercrime operation.

In this thesis, we first analyze and propose novel solutions to the problems
that influence the patch deployment process (e.g., user education, shared code)
on victim machines. Second, we propose novel approaches to detect and analyze
malicious server infrastructures in the wild.

The rest of this Chapter is organized as follows. Section 1.1 introduces vulner-
ability patching, the challenges that arise during the analysis of this phenomenon,
and the approach that we have used to address those challenges. Section 1.2 in-
troduces malicious server infrastructures, shows the challenges to overcome for
detecting and analyzing these servers, and illustrates the approach that we have
adopted to overcome those challenges, while Section 1.3 details our contributions.

1.1 Victim Infection

Many cybercrime operations monetize infected machines by, among others, send-
ing spam, launching DDoS attacks, and performing clickfraud. To control the
infected machines miscreants use malware. To install malware on victim ma-
chines the attacker has to either convince the user to install it, or to exploit a
vulnerability on the user’s machine, for example in the browser or its plugins.
However, vulnerabilities do not persist in a system forever. If the user applies the
patch from the developer the vulnerability gets fixed and the software cannot be
exploited anymore.

In Figure 1.1 we depict the standard linear vulnerability life cycle model,
where the horizontal line represents time. On the time line different events are
marked. The starting point tv is the point when an application is released con-
taining a vulnerability. Then, at time t0 the vulnerability is disclosed and at tp
the patching starts. Exploits might exist before the disclosure time (zero-day) or
might be created after disclosure, for example from the patch [8].

Different defense mechanisms against exploitation of vulnerabilities are avail-
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able. For example intrusion detection systems (IDS) that monitor the network
traffic looking for suspicious payloads [9], and defenses against exploitation imple-
mented in the operating systems like stack canaries, ASLR, PIE [10, 11, 12]. Yet,
the most effective countermeasure against vulnerability exploitation are software
patches, because they eradicate the root of the problem, that is the vulnerability.
However, different factors can slow the patching process, for example manual or
semi-automatic patching, user behavior and education, shared code, and the pres-
ence of exploits in the wild. These factors affect the speed of patch deployment
and hence the immunity to exploitation.

Figure 1.1: Vulnerability life cycle

1.1.1 Problem Statement

In this section we illustrate three fundamental factors that affect vulnerability
patching: shared code, type of user, and exploit availability.

Shared Code. The vulnerability model of Figure 1.1 is widely used in previous
literature and is a linear model [13, 14, 15, 16, 17], where different events hap-
pen sequentially (e.g., application release, vulnerability disclosure, vulnerability
patching), but not always in the same order (e.g., exploit might exist before or
after patch release).

This model has a fundamental limitation: it does not take into account that
multiple versions of the same software may coexist on a system or that the same
software libraries (e.g., .dll files on Windows) may be shipped with different pro-
grams. These libraries may contain a vulnerability and be managed by different
patching programs, and hence are subject to possibly different patching policies.

This introduces the problem of shared code, where the vulnerability life cycle
gets more complex. In Figure 1.2 we show the vulnerability life cycle when a
user has an old non-updated version of a software (Adobe Reader 5) and another
updated version (Adobe Reader 10) that can coexist on a system and share a
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vulnerability. It is intuitive to see that the time of starting of the patching tp is
in different positions on the two time lines.

This difference in the patching policies can be exploited by an attacker that
can try to force the execution of the most outdated software to reproduce some
malicious content and exploit the system of the victim. In this thesis we present
two new avenues to exploit shared code.

Figure 1.2: Vulnerability life cycle in case of software clones

Type of User. Another fundamental aspect of securing software against vul-
nerabilities is user education, because different users have different competences
and skills. Therefore they have different behaviors with respect to patching.
Vendors have made significant efforts to speed-up and automate patching. An
example of this effort is the automatic patching policy adopted by Google Chrome
since its first release, so that there is no human intervention that can slow down
the patching process. However, there are some situations where automatic patch-
ing may be disabled. For example it is not uncommon that in large corporate
networks, system administrators want to have full control of the software versions
of their applications. In this dissertation we will investigate how different type of
users adopt different patching behaviors.

Exploits. The presence of exploits in the wild should speed up the patching
process because in the very moment an exploit becomes available, all the vulnera-
ble machines are potentially exploitable. For this reason, understanding whether
the presence of exploits in the wild hurries the patching process is crucial to
design new countermeasures and policies against vulnerability exploitation. In
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this thesis we will analyze the reaction of clients and software vendors in case an
exploit is available in the wild.

1.1.2 Approach

Previous work has focused mostly on server-side vulnerabilities [18, 19], which
can be analyzed by periodically scanning the Internet to measure the vulnerable
population. Also, a limited subset of client-side application (i.e., web browsers)
have been analyzed while they visit remote websites [20].

In this dissertation we focus on client-side vulnerabilities, i.e., desktop soft-
ware that is used on client machines, for example document readers like Adobe
Reader, document editors like Microsoft Word, browsers like Opera, Firefox, Sa-
fari, Internet Explorer, and multimedia players like Adobe Flash and Quicktime.
This client-side programs, excluding browsers, do not expose on the network so
in order to study them is necessary to have a presence on client machines. For
this reason, previous approaches cannot be used.

First, it is not possible to scan the Internet to measure the vulnerable popu-
lation, because client applications, excluding browsers, usually do not expose any
behavior on the network. Second, it is possible that users may install an applica-
tion and seldom use it. Third, for measuring browser patching activity through
visits to remote websites has several limitations: (I) browsers behind Network
Address Translation (NAT), where multiple clients appear on the Internet with
a single public IP address are not properly measured; (II) users that do not visit
the monitoring website will not be part of the measurement. To overcome these
limitations we have developed a new approach to study large scale deployment
of client software patches and the issues that can affect this process.

Our approach leverages data from different sources: Symantec’s WINE-BR
and WINE-AV [21] datasets, National Vulnerability Database (NVD) [22], Open
Sourced Vulnerability Database (OSVDB) [23], Exploit Database (EDB) [24],
and VirusTotal [25].

The WINE-BR dataset comprises file metadata (e.g., filename, hash, date,
publisher, version) of 8.4 Million hosts with Symantec software installed. This
dataset provides meaningful information (i.e., dates, versions, filenames) to help
tracking client-side software patching activity. We have enriched WINE-BR’s
capabilities with metadata coming from VirusTotal such the content of fields in
the header of the binary executable.

We use NVD and OSVDB vulnerability databases along with WINE-BR and
VirusTotal datasets to find for a given vulnerability, identified by its CVE (e.g.,
CVE-2010-0221), which are the vulnerable and the non-vulnerable versions of a
given program.

The information available in public vulnerability databases might be not per-
fect, because usually the vulnerabilities are reported by volunteers so the versions
that are reported as vulnerable might not be vulnerable or vice versa.
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Also, different vendors have different policies for assigning program versions,
using program lines, and issue security advisories that may mislead the classifi-
cation of a program version to be vulnerable or not.

To address these challenges we have developed a generic approach to map
files in a host to vulnerable and non-vulnerable program versions. We aggregate
the vulnerabilities in these databases into clusters that are patched by the same
program version.

Finally, We track the global decay of the vulnerable host population for each
vulnerability cluster, as software updates are deployed, thanks to a statistical
technique called survival analysis, a technique often used in medical sciences to
track how a population of patients decays when a new drug is administered.

This approach allows us to estimate for each vulnerability cluster the delay
to issue a patch, the rate of patching, and the vulnerable population in WINE.
This approach is helpful also to investigate shared-code (e.g., two programs from
the same vendor that share a vulnerability in a .dll shipped with both) and to
analyze the attack windows that open when two programs share a vulnerability
but follow distinct patching mechanisms.

By checking which applications the WINE users have installed on their sys-
tems we classify the owners of the machines into different categories (i.e., software
professionals, developers, security analysts) and then measure the patch deploy-
ment median time for each different category. This measurement is fundamental
to understand whether different type of users have different patching behaviors.

Furthermore, we leverage exploit metadata in the WINE-AV dataset and the
Exploit Database to estimate the dates when exploits become available and to
determine the percentage of the host population that remains vulnerable upon
exploit releases.

1.2 Malicious Infrastructures

As previously stated, cybercrime operations need three fundamental components
to work: people, victim machines, and a server infrastructure to manage the
victim machines. In this section we describe the most common machine infras-
tructures used by miscreants for their crimes, and which are the most common
types of server used in these infrastructures. Then we show which are the prob-
lems that arise in order to detect these kind of infrastructures and the approach
that we have adopted to solve them.

To deploy and manage a cybercrime operation miscreants need an infras-
tructure of different server types that play different roles in the operation. For
example, exploit servers are used to infect victim machines, command and control
servers manage the infected machines, monetization servers collect ransoms, and
reverse proxies hide the location of the final servers. There exist different infras-
tructures and server types that are used either in benign or in malicious contexts.
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In benign contexts the choice of the model might be oriented to performance and
efficiency, in malicious contexts the choice is oriented to achieve stealthiness and
resiliency.

Client/Server Model. The most simple and widespread infrastructure is the
client/server model, where a remote server (C&C) sends commands to the infected
machines. This model is also used in Pay-Per-Install infrastructures [26], where
the remote server collects information of successful installation of the malware.
In this configuration one or more remote servers are used to control the botnet.
A network of infected machines used for clickfraud, DDoS, spam campaigns and
more. So once the IP address of the server is known is very easy to take it down.

Peer-to-peer Model. In the late years also peer-to-peer infrastructures have
emerged to be used by miscreants [27]. In this infrastructure there is no central
server, and hence no single point of failure. The manager of the infrastructure
(also known as botmaster) uses the malware sample (that has server functionality)
to control the infrastructure and send commands to bots.

The P2P model offers better resiliency, due to its distributed nature. While a
classical client/server architecture offers a more centralized control of the infected
machines, it is less resilient to take-down efforts. This because in P2P networks,
peers are equipotent participants in the application; they are both client and
servers at the same time. Hence, in malicious infrastructures every peer can be
a potential malicious server. While in client/server architectures the behavior of
the server is completely different from the client.

1.2.1 Malicious Server Types

In this Subsection we describe some important types of of malicious servers used
by miscreants to perpetrate their crimes.

1.2.1.1 Exploit Servers

Exploit servers have emerged to be the major distribution vector of malware [28].
These kind of web servers distribute malware by exploiting the client that is visit-
ing them. The exploitation is fully automated by a software that is called exploit
kit, which is sold under a license like a legitimate product. There are different
roles in the exploit kit ecosystem: malware owner, exploit kit developer, exploit
server owner, exploit server manager. The malware owner is usually the person
that buys the exploit kit license because he wants to install his malicious software
on victim machines. The exploit kit developer offers a software kit including a set
of exploits for different platforms (i.e., combination of browser, browser plugins,
and OS), web pages to exploit visitors and drop files on their hosts, a database to
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store all information, and an administration panel to configure the functionality
and provide installation statistics.

There are basically three elements needed to make an exploit server success-
fully work:

1. Exploit Kit

2. Traffic from potential victims.

3. Exploit server hosting.

The Exploit-kit software has three different marketing schemas:

• Host-it-Yourself (HIY).

• Exploitation-as-a-Service(EaaS).

• Pay-Per-Install (PPI).

The drive-by downloads ecosystem has been by now commoditized [28], there
are miscreants that offer exploitation software as a service to other miscreants
that want to exploit victim machines to install their malware. In the following
paragraphs we show which are the different services that a malware owner can
purchase to install his malware on victim machines.

Host-it-Yourself. In this model the malware owner pays only the license of
the exploitation software. He has to provide the traffic, the malware to install,
and the server where to host the exploit kit.

Exploitation-as-a-Service. In this model the malware owner will rent one or
more exploit servers from the developers of the exploit kit, he has to provide
the traffic and the malware to install, while the the hosting infrastructure will be
provided by the developers of the exploit kit generally on bullet-proof hosting [29].

Pay-Per-Install. In this model the malware owner has to provide only the
malware that he wants to be installed on the victim machines, the rest (traffic,
hosting infrastructure) will be provided by the PPI service upon payment. In
this marketing schema there are also affiliates, namely other miscreants that will
monetize malware installations by reporting a successful malware installation to
the PPI service.
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1.2.1.2 Command and Control Servers

C&C servers are one of the most (in)famous categories of malicious servers, since
they are used to manage infected hosts. These servers communicate with the
infected machines through different C&C protocols, for example they can post
the commands on a web blog or inside a social network through HTTP [30] or use
a proprietary communication protocol [31]. Usually a botnet has several C&C
servers that are pointed by different domains. When law-enforcement agencies
want to take-down a botnet they need to discover and seize all the C&C servers,
otherwise the botnet will survive.

1.2.1.3 Reverse Proxies

Reverse proxies are a particular category of web servers used to hide the final,
more valuable, destination web server. In the architecture of a malicious operation
there can be multiple reverse proxies hiding one or more final servers: in this way
if one of the reverse proxies is taken down there is little damage to the underlying
malicious infrastructure, since the proxy can be easily replaced without affecting
the final servers. Understanding whether a final server is hidden behind a reverse
proxy is a key factor for a successful take-down.

1.2.1.4 Other Server Types

There are also other server categories used in malicious operations. For example,
monetization servers collect payments for fake anti-virus programs or ransomware,
and monitoring servers collect statistics about how many exploitations have been
successful and their geographical distribution.

1.2.2 Problem Statement

Current techniques to detect malicious server infrastructures suffer several lim-
itations. There are two different approaches to detect and identify malicious
infrastructures: passive and active. Passive techniques, include for example hon-
eypots (i.e., vulnerable machines listening on the network) [32], spamtraps [33],
and intrusions detection systems [34, 35]. These techniques are usually slow and
incomplete because, for example, it takes time to get a honeypot infected, which
will eventually contact a malicious server that can then be reported and taken-
down. Active techniques, on the other hand, include infiltration into botnets [36],
and Pay-Per-Install (PPI) services [26]. Another example of active techniques are
Google’s Safebrowsing and Microsoft’s Forefront technologies that consist of hon-
eyclients (i.e., virtual machines running a full fledged browser) farms that actively
crawl web servers to see if they are distributing malware through drive-by down-
loads. These techniques proactively interact with the cybercrime infrastructure
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and try to infer information about it. Active techniques are usually, with respect
to passive, more complete and faster, but still they have limitations.

For example, Google Safebrowsing [37] crawls the web detecting exploit servers,
but it does not group together the servers that are part of the same criminal op-
eration. The identification of server operations is fundamental to allow precise
take-down efforts and may help to identify the people behind the operation.

Previous work has been focused to detect a particular server type, for example
the recent analysis and take-over of the Dorkbot botnet [38] focuses on C&C
servers and the study of the exploit-kit ecosystem [28] focuses on exploit servers.
The limitation of these approaches is that the detection and analysis mechanism
are tailored on a specific server type.

Hence detecting and enumerating all the servers of an operation is another key
feature that detection tools must have and current approaches lack this capability.

For example, a ransomware operation may have 3 C&C servers, 3 monetiza-
tion servers used for managing the transactions with the infected users, and 2
exploit server used to install the malware on victim machines. Detecting all 8
servers is one of the most effective ways to disrupt the entire operation. Because
if at least one exploit server, one C&C server and one monetization server remain
alive, the operation will still survive. Detecting and enumerating all the servers
of an operation can also help to find the people behind the operation, thanks to
the evidence that can be found on these servers, like logs and hosting provider
registration information. Identifying the people behind an operation is an even
better way to disrupt the operation. Another limitation of current detection ap-
proaches is the capability to understand if the detected server is only a redirector
(i.e., silent reverse proxy) that hides the final malicious server.

In this dissertation we develop novel tools and techniques to tackle the prob-
lem of detection and analysis of malicious server infrastructures generally. In
other words we design tools and techniques to potentially detect any kind of ma-
licious server and any kind of operation starting with a malware sample and an
alive server of the operation. In addition, we provide a solution to the problem
of silent reverse proxies detection to improve the accuracy of current detection
methodology.

1.2.3 Approach

In the second part of dissertation we focus on active detection techniques of
malicious server infrastructures. First, we have focused our researches on the
detection of exploit server operations. Then, we have developed CyberProbe,
a tool to detect different server types (e.g., C&C, monetization, and P2P bots)
that improves coverage to Internet scale. Lastly, we have realized RevProbe, a
tool that detects silent reverse proxies, which may hide malicious servers behind.
RevProbe improves the accuracy of CyberProbe to allow precise take-down
efforts.
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Exploit Server Operations Detection. We have developed an active probing
methodology to detect exploit server operations in the wild. We have built an
infrastructure that collects malicious URLs from external feeds leading to exploit
servers that drop malware through drive-by downloads. Once we have the URLs,
we visit them with specialized milkers and honeyclients. Specialized milkers are
HTTP clients tailored for a specific exploit server family that minimize to the
bare minimum the dialog with the server to get the malware samples. The second
are instrumented virtual machines with a full fledged browser that are directed to
the malicious URLs to get the malware samples. Besides the malware samples,
our milkers also collect the metadata associated with the exploit servers they visit
(e.g., domains, URLs) and save this data in a database for further analysis.

We have collected more than 11,000 unique malware samplesr. To classify
these samples we use dynamic and static approaches. We run the malware in
a sandbox and capture a screenshot of its execution and the network traffic.
We also collect the icons embedded in the executable file. We use perceptual
hashing techniques [39] to compare and cluster together malwares with similar
screenshots and icons. For the network traffic we use FIRMA [40] an external
tool that automatically clusters similar malware together based on its network
behavior.

With the information collected during the milking phase and the classification
of the malware samples we cluster together exploit servers that belong to the same
operation (i.e., controlled by the same individuals). Our approach leverages the
fact that exploit servers from the same operation share the configuration of the
exploit kit software. By checking different features of the configuration (e.g.,
domain, urls, distributed malware).

Internet-Scale Malicious Server Detection. After investigating exploit server
operations we have expanded our detection capabilities developing a new ap-
proach to detect different server types on a large scale. We have developed a
tool named CyberProbe that uses a novel active probing approach to detect
and enumerate different server types and operations. At the core of Cyber-
Probe is adversarial fingerprint generation (AFG). The difference with previous
approaches on network fingerprinting [41], is that in our case we do not control
the remote server and hence we cannot send as many probes as we want. AFG is
technique that by interacting with one server of an operation generates a finger-
print (i.e. a unique request and response pattern) that will be used for an Internet
wide scan to find all the instances of that server family. As a server family we
identify the operation which the server belongs plus the type of server. The intu-
ition behind CyberProbe’s AFG is to reply a previously seen communication
done by a malware sample towards a remote server (i.e., seed server) that needs
to be alive at the moment of the fingerprint generation. We extract the relevant
communication that the malware has done with one or more remote servers, that
are not benign, and then generalize a unique request-response pattern that can
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identify all the remote servers of that family.
We extract the request-response-pairs (RRPs) from the communications and

automatically identify if they have to be discarded because they are benign, or we
have to generalize and replay them to the remote server to generate a fingerprint.

A fingerprint comprises: (I) a port selection function that given an IP address
returns the port where to send the probes, (II) a probe construction function that
given an IP address returns the request that we will send to remote servers, and
(III) a classification function, a function that will classify the responses to the
probe as benign or part of the fingerprinted operation.

CyberProbe is able to detect different server types, including P2P, and to
work with different transport (e.g., TCP and UDP) and application protocols
(e.g., HTTP and proprietary protocols).

We have developed different scanners for probing remote servers with the
generated fingerprints. We have a TCP horizontal scanner that scans the target
network (e.g., Internet) to see if the selected port is open. Then with the result
of the horizontal scan we feed the AppTCP scanner that sends the probes to the
servers that have the target port open. We have also developed a UDP scanner
that sends probes through UDP and collects the answers.

We have adopted two different approaches for our scanning. First, we have
scanned the local ranges where the seed servers are hosted. Then we have also
performed Internet-wide scans. Our aim during our scans was to achieve coverage
in a reasonable amount of time without raising many complaints by the receiving
networks. Moreover we have manually vetted our fingerprints not to contain any
harmful information like exploits.

Silent Reverse Proxy Detection. While investigating malicious infrastruc-
ture we have faced the problem of reverse proxies that are used to hide the
final destination servers that contain evidence of the cybercrime. To discover if a
probed server is a reverse proxy we have developed a new tool called RevProbe.
By leveraging information leakages RevProbe enhances the capabilities of Cy-
berProbe allowing the detection of reverse proxies used to protect malicious in-
frastructures. We have adopted an active probing black-box approach, where we
do not have any control on the target server. There exists two general approaches
to identify proxies through active probing: timing-based and discrepancy-based.
Timing-based approaches leverage the property that proxies introduce an addi-
tional hop in the communication and consequently they introduce more delay.
Discrepancy-based approaches on the other hand focus on traffic changes intro-
duced by the proxy.

We use discrepancy-based approach, because timing based approaches cannot
identify multiple servers hidden behind a web load balancer (WLB) and also
because previous work has shown that timing based approaches are not effective
on the Internet, due to the fact the delays between two servers within the same
network are too small to be significant [42]. Thus, discrepancy based approaches
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are more reliable to detect reverse proxies and to reconstruct the infrastructure
that lays behind them.

However, discrepancy based approaches may miss to detect a reverse proxy if
it does not introduce any change in the traffic, for this reason we have included
in RevProbe other techniques that help to detect difficult configuration such as
reverse proxy running the same software as the final server behind.

1.3 Thesis Contributions

The main contributions of this thesis are divided in three parts, the first about
analyzing the vulnerability life cycle, the second about novel techniques for active
detection of malicious servers infrastructures, and the last one is the Malicia
dataset, collected over a period of more than one year while analyzing malicious
server infrastructures.

The contributions are summarized as the following:

1. A Study of the Impact of Shared Code on Vulnerability Patching (1.3.1)

2. Active Detection of Malicious Server Infrastructures and the Malicia dataset
(1.3.2)

1.3.1 A Study of the Impact of Shared Code on Vulnera-
bility Patching

As mentioned previously software vulnerabilities are very important in the build-
ing process of a cybercrime operation, because they are the entry point to install
malware into remote clients. In Chapter 3 we have developed a general approach
to merge information about vulnerabilities from different data sources and mea-
sure vulnerability life cycle [43]. With respect to vulnerability life cycle analysis
our work makes the following contributions:

1. We conduct a systematic analysis of the patching process of 1,593 vulnera-
bilities in 10 client-side applications, spanning versions released on a 5-year
period.

2. We demonstrate two novel attacks that enable exploitation by invoking old
versions of applications that are used infrequently, but remain installed.

3. We measure the patching delay and several patch deployment milestones
for each vulnerability.

4. We propose a novel approach to map files on end-hosts to vulnerable and
patched program versions.
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5. Using these techniques, we quantify the race between exploit creators and
the patch deployment, and we analyze the threats presented by multiple
installations and shared code for patch deployment.

6. We identify several errors in the existing vulnerability databases, and we
release a cleaned dataset at http://clean-nvd.com/.

1.3.2 Active Detection of Malicious Server Infrastructures

We have contributed to different aspects of detection of malicious infrastructures,
our contributions can be summarized as the following:

1. In Chapter 4, we develop a methodology to cluster the servers into the
cybercrime operations they belong using the information provided by the
analysis of the malware they distribute and the configuration of the exploit
kit software they host [44]. We investigate 500 exploit servers in the wild
for a period of 11 months and the polymorphism and the prevalence of the
exploits used by these servers [45].

2. In Chapter 5, we have developed a general framework to fingerprint and
identify any kind of malicious server in the Internet. Our technique is gen-
eral, easy to deploy, and cheap. It represents a significant advance to detect
and take down cybercrime operations. Our approach interacts with alive
servers from an operation using a novel technique called Adversarial Finger-
print Generation. This technique replays the communication of the malware
with the malicious server and identifies a distinctive trace in the response
that is able to fingerprint all the servers of that type for that particular
operation. We have then developed different scanners for different proto-
cols and performed 24 localized and Internet-wide scans to demonstrate the
effectiveness of our approach.

3. In Chapter 6, we have faced one issue of CyberProbe, the usage of silent
reverse proxies to hide the final servers. For take-down efforts it is neces-
sary to exactly identify which is the server that belongs to the operation.
Miscreants, to protect their infrastructure add one or more silent reverse
proxies in front of the final servers. In this way law-enforcement agencies
will be only able to find the reverse proxies that do not contain evidence
about the cybercrime.

For this reason, we have developed RevProbe a system that, by using
information leakage techniques, is able to detect reverse proxies and also
effectively identify the infrastructure that lays behind them. We have tested
RevProbe on 36 controlled scenarios showing that our tool outperforms
current solutions, moreover we have measured the prevalence of reverse
proxies in malicious and benign websites on the Internet.
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The Malicia Dataset. During the analysis of the malicious drive-by download
operations we have collected 11,688 malware over a period of 11 months from
500 different exploit servers. These samples have been analyzed (statically and
dynamically) and classified, all the derived data has been collected and organized
into a database. In addition to the classification data the DB also contains the
details of the different operations to which the exploit servers belong. Giving also
a picture of these kind of operations.

We make the Malicia dataset [46, 45] available to the community. At the
time of the writing of this thesis the dataset has been released to more than 65
international institutions.
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2
Related Work

It was year 1996 when the article by Aleph1 ”Smashing The Stack For Fun And
Profit“ appeared on Phrack magazine, that was the forerunner for a growing
economy where exploits are a commodity that can be purchased [28] and where
people get rewards for installing malicious software on victim’s machine [26].
Software vulnerabilities are a key point in cybercrime because when exploited they
allow to take control of a remote machine. The fact that most of the computers
in the world run the same software gives to miscreants potential to take control
literally of an army of machines for their nefarious actions. Of course to control
all these machines an infrastructure is needed.

Vulnerabilities and malicious infrastructures are two fundamentals aspect of
cybercrime, these aspects have been extensively studied in literature, in this Sec-
tion we show related work divided into these categories.

2.1 Vulnerabilty Lifecycle Analysis

Several researchers [13, 15, 16] have proposed vulnerability lifecycle models, with-
out exploring the patch deployment phase in as much detail as we do. Prior work
on manual patch deployment has showed that user-initiated patches [47, 48, 49,
50] occur in bursts, leaving many hosts vulnerable after the fixing activity sub-
sides. After the outbreak of the Code Red worm, Moore et. at [47] probed
random daily samples of the host population originally infected and found a slow
patching rate for the IIS vulnerability that allowed the worm to propagate, with
a wave of intense patching activity two weeks later when Code Red began to
spread again. Rescorla [48] studied a 2002 OpenSSL vulnerability and observed
two waves of patching: one in response to the vulnerability disclosure and one
after the release of the Slapper worm that exploited the vulnerability. Each fixing
wave was relatively fast, with most patching activity occurring within two weeks
and almost none after one month.

Rescorla [48] modeled vulnerability patching as an exponential decay process
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with decay rate 0.11, which corresponds to a half-life of 6.3 days. Ramos [49]
analyzed data collected by Qualys through 30 million IP scans and also reported a
general pattern of exponential fixing for remotely-exploitable vulnerabilities, with
a half-life of 20-30 days. However, patches released on an irregular schedule had
a slower patching rate, and some do not show a decline at all. While the median
time to patch (tm) for the applications employing silent update mechanisms and
for two other applications (Firefox and Thunderbird) is approximately in the
same range with these results, for the rest of the applications in our study tm
exceeds 3 months.

Yilek et al. [50] collected daily scans of over 50,000 SSL/TLS Web servers,
in order to analyze the reaction to a 2008 key generation vulnerability in the
Debian Linux version of OpenSSL. The fixing pattern for this vulnerability had
a long and flat curve, driven by the baseline rate of certificate expiration, with
an accelerated patch rate in the first 30 days and with significant levels of fixing
(linked to activity by certification authorities, IPSes and large Web sites) as
far out as six months. 30% of hosts remained vulnerable six months after the
disclosure of the vulnerability. Durumeric et al. [18] compared these results with
measurement of the recent Heartbleed vulnerability in OpenSSL and showed that
in this case the patching occurred faster, but that, nevertheless, more than 50%
of the affected servers remained vulnerable after three months.

While the references discussed above considered manual patching mechanisms,
the rate of updating is considerably higher for systems that employ automated
updates. Gkantsidis et al. [51] analyzed the queries received from 300 million
users of Windows Update and concluded that 90% of users are fully updated
with all the previous patches (in contrast to fewer than 5%, before automated
updates were turned on by default), and that, after a patch is released, 80% of
users receive it within 24 hours. Dübendorfer et al. [52] analyzed the User-Agent
strings recorded in HTTP requests made to Google’s distributed Web servers, and
reported that, within 21 days after the release of a new version of the Chrome
Web browser, 97% of active browser instances are updated to the new version
(in contrast to 85% for Firefox, 53% for Safari and 24% for Opera). This can
be explained by the fact that Chrome employs a silent update mechanism, which
patches vulnerabilities automatically, without user interaction, and which cannot
be disabled by the user. These results cover only instances of the application
that were active at the time of the analysis. In contrast, we study multiple
applications, including 500 different versions of Chrome, and we analyze data
collected over a period of 5 years from 8.4 million hosts, covering applications that
are installed but seldom used. Our findings are significantly different; for example,
447 days are needed to patch 95% of Chrome’s vulnerable host population.

Despite these improvements in software updating, many vulnerabilities remain
unpatched for long periods of time. Frei et al. [53] showed that 50% of Windows
users were exposed to 297 vulnerabilities in a year and that a typical Windows
user must manage 14 update mechanisms (one for the operating system and
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13 for the other software installed) to keep the host fully patched. Bilge et
al. [17] analyzed the data in WINE to identify zero-day attacks that exploited
vulnerabilities disclosed between 2008–2011, and observed that 58% of the anti-
virus signatures detecting these exploits were still active in 2012.

2.2 Malicious Infrastructure Detection

Drive-by downloads. A number of works have analyzed drive-by downloads.
Wang et al. [54] build honeyclients to find websites that exploit browser vulner-
abilities. Moshchuk et al. [55] use honeyclients to crawl over 18 million URLs,
finding that 5.9% contained drive-by downloads. Provos et al. [56] describe a
number of exploitation techniques used in drive-by downloads. We identify four
different aspects of content control responsible for enabling browser exploitation:
advertising, thirdparty widgets, user contributed content, and web server security.
They follow-up with a large-scale study on the prevalence of drive-by downloads
and the redirection chain leading to them, finding that 67% of the malware dis-
tribution servers for drive-by downloads were in China [57]. Polychronakis et
al. examined the network behavior of malware distributed by drive-by down-
loads [58]. Recently, Grier et al. [28] investigate, the emergence of exploit kits
and exploitation-as-a-service in the drive-by downloads ecosystem, showing that
many of the most prominent malware families propagate through such attack
technique. Our work differs from prior drive-by downloads analysis in that we fo-
cus on identifying and understanding the properties of drive-by operations, rather
than individual exploit servers, to show the big picture behind cybercrime. Other
work proposes detection techniques for drive-by downloads [6, 59, 60] and could
be incorporated into our infrastructure.

Cho et al. [61], infiltrated the MegaD spam botnet and collected evidence on
its infrastructure being managed by multiple botmasters. In contrast, our work
shows how to automate the identification of servers with shared management,
grouping them into operations. In simultaneous work, Canali et al. [62] analyze
the security of shared hosting services. Similar to their work, we also issue abuse
reports to hosting providers but our focus is on VPS services, which are more
adequate for hosting exploit servers.

Rogue Networks. Previous work has studied rogue networks hosting unusu-
ally large amounts of malicious activity [63, 64]. Our work also observes au-
tonomous systems hosting unusually large numbers of exploit servers compared
to their size, as well as countries more popular than expected from the size of
their IP space.

Malware clustering & classification. Prior works on running malware in a
controlled environment have influenced our malware execution infrastructure [65,
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66, 67]. Our classification builds on a number of prior works on behavioral classi-
fication techniques [68, 58, 69, 70, 71, 72, 73, 28] and incorporates the automated
clustering of malware icons using perceptual hashing. We could also incorporate
techniques to reduce the dimensionality in malware clustering [74] and to evaluate
malware clustering results using AV labels [75].

Screenshot clustering. Anderson et al. [72] compare screenshots of a browser
visiting scam webpages using image shingling, which splits an image into tiles,
hashes the tiles, and compares the percentage of identical hashes. Grier et al. [28]
propose a different technique based on the mean squared deviation between their
histograms. However, they do not evaluate their technique. Our perceptual
hashing approach differs in that it is better fit to compare images of different
sizes (e.g., icons).

Active probing. Active probing (or active network fingerprinting) has been
proposed for a variety of goals. Comer and Lin first proposed active probing
to identify differences between TCP implementations [76] and tools like Nmap
popularized the approach to identify the OS of remote hosts [77]. It has also been
used to identify the version of application-layer servers [78, 79] and for tracking
specific devices based on device clock skews [80]. A variant of active probing
identified web users that visit a web server by querying the browser [81].

Related to our work are active probing techniques to detect network-based
malware. BotProbe [82] actively injects commands into IRC channels to identify
if the target is an IRC bot or a human. PeerPress [83] uses active probing to detect
P2P malware in a monitored network. Two fundamental differences with these
work are that CyberProbe can detect any type of application that listens on
the network, and that it focuses on probing external networks, achieving Internet
scale. CyberProbe does not need to inject traffic into existing connections as
BotProbe. The fingerprint generation used by CyberProbe differs from the one
in PeerPress in that it leverages network traffic rather than binary analysis. This
makes it possible to scale to running large quantities of malware. In independent
work, Marquis-Boire et al. [84] manually generated fingerprints to identify the
servers used by FinSpy, a commercial software that governments employ to spy on
activists. Our work differs, among others, in that we propose a novel adversarial
fingerprint generation technique that automatically generates fingerprints for a
large number of malicious server families.

There has also been work on defeating OS fingerprinting. Smart et al. [85]
proposed a stack fingerprinting scrubber that sits on the border of a protected
network and limits the information gathered by a remote attacker by standard-
izing the TCP/IP communication. This work is based on the protocol scrubber
proposed by Malan et al. [86]. Recently Xu et al. [87] proposed AutoProbe
a work in which we have collaborated. This system leverages program analy-
sis techniques to generate the fingerprints, the difference with CyberProbe is
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in the adversarial fingerprint generation step, while CyberProbe uses traffic
generated by the malware to create the fingerprint, AutoProbe analyzes the
malware executable and is able to generate more general fingerprints and it works
also without the presence of seeds servers.

Fingerprint/signature generation. FiG proposed to automatically generate
OS and DNS fingerprints from network traffic [88]. CyberProbe follows the
same high-level fingerprint generation approach as FiG, but proposes a novel
adversarial fingerprint generation technique, with two fundamental differences.
First, it does not randomly or manually generate candidate probes, rather it
reuses previously observed requests. This greatly reduces the traffic that needs
to be sent to the training servers for generating a fingerprint, and produces in-
conspicuous probes. Both properties are fundamental when fingerprinting mali-
cious servers. In addition, CyberProbe uses network signatures to implement
the classification function, so it does not require a specific fingerprint matching
component. Furthermore, CyberProbe addresses the problem of Internet-wide
scanning.

There is a wealth of prior work on automatically generating network signatures
for worm detection. Honeycomb [89], Autograph [90], and EarlyBird [91] pro-
posed signatures comprising a single contiguous token. Polygraph [92] proposed
more expressive token set, token subsequence, and probabilistic Bayes signatures.
Wang et al. extended PAYL [93] to generate token subsequence signatures for
content common to ingress and egress traffic. Nemean [94] introduced semantics-
aware signatures and Hamsa [95] generated token set signatures that can handle
some noise in the input traffic pool. Beyond worms, Botzilla [96] generated sig-
natures for the traffic produced by a malware binary run multiple times in a
controlled environment, Perdisci et al. [71] clustered and generated signatures for
malware with HTTP C&C protocols, and FIRMA [40] generalized the approach
to handle any protocol. A fundamental difference is that these studies gener-
ate network signatures for requests sent by the malware, while CyberProbe
generates them on the responses from remote servers. Our signature generation
algorithm builds on the one proposed by Hamsa but handles larger amounts of
noise in the input traffic. In addition, they either assume a single malware family
or small amounts of noise inthe input traffic. Portokalids et al. [97] automatically
generate signatures for zero-day attacks using taint tracking.

Scanning. Prior work demonstrates the use of Internet-wide scanning for secu-
rity applications. Provos and Honeyman used it for identifying vulnerable SSH
servers [98], Dagon et al. for finding DNS servers that provide incorrect resolu-
tions [99], and Heninger et al. for detecting weak cryptographic keys in network
devices [100]. In this work we propose another security application for active
probing: identifying malicious servers. Leonard et al. [101] described how to
perform Internet-wide horizontal scans with the goal of maximizing politeness.
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The design of our scanning is greatly influenced by their work. Other studies are
related to how to perform fast scanning. Staniford et al. described techniques
that malware can use to quickly spread through scanning [102]. Netmap [103]
proposed a framework for fast packet I/O in software, which enables a single core
to generate 14.88 Mpps, enough to saturate a 10Gbps link. Recently, Durumeric
et al. proposed Zmap [104], a fast Internet-wide scanner that can do a horizontal
scan of the Internet in 45 minutes from a single host. Compared to these studies
our goal is to identify malicious servers. CyberProbe could incorporate some
of these techniques to speed up the scanning, but currently we cap the scan speed
for good citizenship.

ISP proxies. ISPs may setup proxies at their border routers for improving per-
formance (e.g., caching, image scaling) and modifying content. Wang et al. [105]
propose that ISP proxies collaborate by forwarding requests among themselves
so that cached objects are sent back directly to clients. In this work we call these
ISP proxies and do not consider them reverse proxies because they do not hide
the existence of the final servers. Recently, Weaver et al. [106] propose a tech-
nique to detect ISP and forward proxies by installing an application in the client
host that communicates with a Web server under their control. Discrepancies
between the response sent by the server and the response received by the client
application indicate the presence of a proxy. In our work we focus on detecting
reverse proxies where we cannot control the server the client connects to.

Reverse proxies. Tools like the http trace.nasl [107] plugin detect explicit
reverse proxies by examing the HTTP Via header, but cannot detect silent reverse
proxies. One approach to detect proxies to send requests that replied by the
reverse proxy (if there is one) and build fingerprints on those reponses. Tools
like lbmap [108] and Htrosbif [109] use that approach. However, these tools only
detect reverse proxies running specific software (e.g., HAProxy, pound, Vanquish)
but cannot detect generic Web server software (e.g., Apache, nginx) running as
reverse proxy. Gregoire [110] presents the HTTP traceroute tool (TLHS), which
leverages the Max-Forwards HTTP header that limits the maximum number of
times a request is proxied. However, TLHS works only on limited scenarios.
For example, nginx as a reverse proxy ignores the Max-Forwards header and
thus cannot be detected by TLHS. In his master’s thesis, Weant [111] proposes
a different technique to detect reverse proxies through timing analysis of TCP
connnections.

Web load balancers. Some approaches focus only on detecting WLBs, a type
of reverse proxies. Halberd [112] is a WLB detection tool that sends the same re-
quest a large number of times to a given IP address. Differences in some response
headers (e.g., E-Tag, Date, Server) indicate a load balancer. This approach can
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only detect reverse proxies that load balance and fails if the final web servers run
the same program version. Curt Shaffer describes the problems that WLBs intro-
duce for penetration testing [113] and presents two WLB detection techniques:
detecting cookies introduced by the WLB in the communication to achieve per-
sistence and examining the IP ID field. We have examined these techniques in
detail and proposed several others.

Web application firewalls. WAFW00f [114] is a tool for detecting WAFs. It
sends a normal request and malicious request to the same URL. Discrepancies
between both responses identify the presence of a WAF. This tool fails if the WAF
return different status code on malicious requests. This tool cannot differntiate
between a WAF or other filtering performed directly by the final Web server.

Web server fingerprinting. A number of tools exist to fingerprint the pro-
gram and version run by a remote Web server [115, 116, 117, 118, 119, 120].
Among these, some tools like Nmap [121] or ErrorMint [122] fingerprint the pro-
gram version exclusively by examining explicit program version information pro-
vided by the server, e.g., in the Server headers and error pages. Other tools like
HMAP [120], HTTPPrint [115], and HTTPRecon [117] use fingerprints that cap-
ture differences between how different web server software and version construct
their responses. These type of fingerprints do not rely on the program version
information explicitly provided by the server.

Automatic fingerprint generation. Some approches have been proposed to
automatically build fingerprints such as FiG [88]. Book et al. [118] propose a tech-
nqiue based on bayesian filter to automatically generate fingerprints to identify
web server software.
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Analysis of Client-Side
Vulnerabilities
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3
The Attack of the Clones: A Study of the Impact

of Shared Code on Vulnerability Patching

3.1 Preamble

This chapter reproduces the content of the paper: ”The Attack of the Clones: A
Study of the Impact of Shared Code on Vulnerability Patching“ published at the
IEEE Security & Privacy Symposium 2015. This paper describes the analysis of
the vulnerability lifecycle of client-side application. This work is a collaboration
with Symantec Corporation and the University of Maryland. Antonio Nappa has
been the leading author.

3.2 Introduction

In recent years, considerable efforts have been devoted to reducing the impact of
software vulnerabilities, including efforts to speed up the creation of patches in
response to vulnerability disclosures [15]. However, vulnerability exploits remain
an important vector for malware delivery [123, 124, 17].

Prior measurements of patch deployment [47, 48, 49, 50, 18] have focused
on server-side vulnerabilities. Thus, the lifecycle of vulnerabilities in client-side
applications, such as browsers, document editors and readers, or media players,
is not well understood. Such client-side vulnerabilities represent an important
security threat, as they are widespread (e.g., typical Windows users are exposed
to 297 vulnerabilities in a year [53]), and they are often exploited using spear-
phishing as part of targeted attacks [125, 126, 127].

One dangerous peculiarity of client-side applications is that the same host
may be affected by several instances of the same vulnerability. This can happen
if the host has installed multiple instances of the same application, e.g., multiple
software lines or the default installation and an older version bundled with a sep-
arate application. Multiple instances of the vulnerable code can also occur owing
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to libraries that are shared among multiple applications (e.g., the Adobe library
for playing Flash content, which is included with Adobe Reader and Adobe Air
installations). These situations break the linear model for the vulnerability lifecy-
cle [13, 14, 15, 16, 17], which assumes that the vulnerability is disclosed publicly,
then a patch released, and then vulnerable hosts get updated. In particular,
vulnerable hosts may only patch one of the program installations and remain
vulnerable, while patched hosts may later re-join the vulnerable population if an
old version or a new application with the old code is installed. This extends the
window of opportunity for attackers who seek to exploit vulnerable hosts. More-
over, the owners of those hosts typically believe they have already patched the
vulnerability.

To the best of our knowledge, we present the first systematic study of patch
deployment for client-side vulnerabilities. The empirical insights from this study
allow us to identify several new threats presented by multiple installations and
shared code for patch deployment and to quantify their magnitude. We analyze
the patching by 8.4 million hosts of 1,593 vulnerabilities in 10 popular Windows
client applications: 4 browsers (Chrome, Firefox, Opera, Safari), 2 multimedia
players (Adobe Flash Player, Quicktime), an email client (Thunderbird), a docu-
ment reader (Adobe Reader), a document editor (Word), and a network analysis
tool (Wireshark).

Our analysis combines telemetry collected by Symantec’s security products,
running on end-hosts around the world, and data available in several public reposi-
tories. Specifically, we analyze data spanning a period of 5 years available through
the Worldwide Intelligence Network Environment (WINE) [21]. This data in-
cludes information about binary executables downloaded by users who opt in for
Symantec’s data sharing program. Using this data we analyze the deployment of
subsequent versions of the 10 applications on real hosts worldwide. This dataset
provides a unique opportunity for studying the patching process in client appli-
cations, which are difficult to characterize using the network scanning techniques
employed by prior research [47, 48, 49, 50, 18].

The analysis is challenging because each software vendor has its own software
management policies, e.g., for assigning program versions, using program lines,
and issuing security advisories, and also by the imperfect information available in
public vulnerability databases. To address these challenges we have developed a
generic approach to map files in a host to vulnerable and non-vulnerable program
versions, using file meta-data from WINE and VirusTotal [25], and the NVD [22]
and OSVDB [23] public vulnerability databases. Then, we aggregate vulnera-
bilities in those databases into clusters that are patched by the same program
version. Finally, using a statistical technique called survival analysis [128], we
track the global decay of the vulnerable host population for each vulnerability
cluster, as software updates are deployed.

Using this approach we can estimate for each vulnerability cluster the delay
to issue a patch, the rate of patching, and the vulnerable population in WINE.
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Using exploit meta-data in WINE and the Exploit Database [24], we estimate
the dates when exploits become available and we determine the percentage of the
host population that remains vulnerable upon exploit releases.

We quantify the race between exploit creators and the patch deployment, and
we find that the median fraction of hosts patched when exploits are released is
at most 14%. All but one of the exploits detected in the wild found more than
50% of the host population still vulnerable. The start of patching is strongly
correlated with the disclosure date, and it occurs within 7 days before or after
the disclosure for 77% of the vulnerabilities in our study—suggesting that vendors
react promptly to the vulnerability disclosures. The rate of patching is generally
high at first: the median time to patch half of the vulnerable hosts is 45 days. We
also observe important differences in the patching rate of different applications:
none of the applications except for Chrome (which employs automated updates
for all the versions we consider) are able to patch 90% of the vulnerable population
for more than 90% of vulnerability clusters.

Additionally, we find that 80 vulnerabilities in our dataset affect common code
shared by two applications. In these cases, the time between patch releases in the
different applications is up to 118 days (with a median of 11 days), facilitating
the use of patch-based exploit generation techniques [129]. Furthermore, as the
patching rates differ between applications, many hosts patch the vulnerability
in one application but not in the other one. We demonstrate two novel attacks
that enable exploitation by invoking old version of applications that are used
infrequently, but that remain installed.

We also analyze the patching behavior of 3 user categories: professionals,
software developers, and security analysts. For security analysts and software
developers the median time to patch 50% of vulnerable hosts is 18 and 24 days,
respectively, while for the general user it is 45 days—more than double.

In summary, we make the following contributions:

• We conduct a systematic analysis of the patching process of 1,593 vulnera-
bilities in 10 client-side applications, spanning versions released on a 5-year
period.

• We demonstrate two novel attacks that enable exploitation by invoking old
versions of applications that are used infrequently, but remain installed.

• We measure the patching delay and several patch deployment milestones
for each vulnerability.

• We propose a novel approach to map files on end-hosts to vulnerable and
patched program versions.

• Using these techniques, we quantify the race between exploit creators and
the patch deployment, and we analyze the threats presented by multiple
installations and shared code for patch deployment.
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Figure 3.1: Events in the vulnerability lifecycle. We focus on measuring the patch-
ing delay [t0, tp] and on characterizing the patch deployment process, between tp
and ta.

• We identify several errors in the existing vulnerability databases, and we
release a cleaned dataset at http://clean-nvd.com/.

The rest of this paper is organized as follows. Section 3.3 describes the security
model for patching vulnerabilities. Section 3.4 details our datasets and Section 3.5
our approach. Our findings are presented in Section 3.6. Section 3.7 reviews
prior work, Section 3.8 discusses implications of our findings, and Section 3.10
concludes.

3.3 Security Model for Patching Vulnerabilities.

Prior research [13, 48, 49, 14, 50, 15, 16, 17] generally assumes a linear model for
the vulnerability lifecycle, illustrated in Figure 3.1. In this model, the introduc-
tion of a vulnerability in a popular software (tv), is followed by the vulnerability’s
public disclosure (t0), by a patch release (tp) and by the gradual deployment of
the patch on all vulnerable hosts, which continues until all vulnerable application
instances have been updated (ta). Important milestones in the patch deployment
process include the median time to patch, i.e., the time needed to patch half of
the vulnerable hosts (tm), and the times needed to patch 90% and 95% of the
vulnerable hosts (t90% and t95%). Additional events may occur at various stages in
this lifecycle; for example exploits for the vulnerability may be released before or
after disclosure (te1, te2), and the vulnerable host population may start decaying
earlier than tp if users replace the vulnerable version with a version that does not
include the vulnerability (td). Notwithstanding these sources of variability, the
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linear model assumes that tv < t0 ≤ tp < tm < t90% < t95% < ta.
In practice, however, these events do not always occur sequentially, as a host

may be affected by several instances of the vulnerability. Software vendors some-
times support multiple product lines; for example, Adobe Reader has several lines
(e.g., 8.x, 9.x, 10.x) that are developed and released with some overlap in time and
that can be installed in parallel on a host. Additionally, applications are some-
times bundled with other software products, which install a (potentially older)
version of the application in a custom directory. For example, device drivers
such as printers sometimes install a version of Adobe Reader, to allow the user
to read the manual. Furthermore, some applications rely on common libraries
and install multiple copies of these libraries side-by-side. For example, Safari
and Chrome utilize the WebKit rendering engine [130], Firefox and Thunderbird
share several Mozilla libraries, and libraries for playing Flash files are included
in Adobe Reader and Adobe Air. In consequence, releasing and deploying the
vulnerability patch on a host does not always render the host immune to exploits,
as the vulnerability may exist in other applications or library instances and may
be re-introduced by the installation of an older version or a different application.
The security implications of this non-linear vulnerability lifecycle are not well
understood.

3.3.1 Threats of Shared Code and Multiple Installations

The response to vulnerabilities is subject to two delays: the patching delay and
the deployment delay. The patching delay is the interval between the vulner-
ability disclosure t0 and the patch release tp in Figure 3.1. This delay allows
attackers to create exploits based on the public details of the vulnerability and to
use them to attack all the vulnerable instances of the application before they can
be patched. After developing and testing a patched version of the application,
the vendor must then deploy this version to all the vulnerable application in-
stances. This deployment delay controls the window when vulnerabilities can be
exploited after patches are available, but before their deployment is completed. In
recent years, considerable efforts have been devoted to reducing the vulnerability
patching delays, through efforts to speed up the creation of patches in response
to vulnerability disclosures [15], and the patch deployment delays, through auto-
mated software updating mechanisms [51, 52]. While these techniques are aimed
at patching vulnerabilities in the linear lifecycle model, attackers may leverage
shared code instances and multiple application installations to bypass these de-
fenses. Next, we review some of these security threats.

Overhead of maintaining multiple product lines. When a vendor supports
multiple product lines in parallel and a vulnerability is discovered in code shared
among them, the vendor must test the patch in each program line. Prior work on
optimal patch-management strategies has highlighted the trade-off between the
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patching delay and the amount of testing needed before releasing patches [14].
The overhead of maintaining multiple product lines may further delay the release
of patches for some of these lines.

Threat of different patch release schedules. When a vulnerability affects
more than one application, patch releases for all these applications seldom occur
at the same time. Coordinated patch releases are especially difficult to achieve
when applications from different vendors share vulnerabilities, e.g., when the
vulnerabilities affect code in third-party libraries. When the patch for the first
application is released, this gives attackers the opportunity to employ patch-based
exploit generation techniques [129] to attack the other applications, which remain
unpatched.

Threat of multiple patching mechanisms. When shared code is patched
using multiple software update mechanisms, some instances of the vulnerability
may be left unpatched. The attacker can use existing exploits to target all the
hosts where the default application used for opening a certain type of file (e.g.,
PDF documents) or Web content (e.g., Flash) remains vulnerable. This situation
may happen even after the vendor has adopted automated software updates—for
example, when the user installs (perhaps unknowingly, as part of a software bun-
dle) an older version of the application, which does not use automated updates,
and makes it the default application, or when the user disables automatic updates
on one of the versions installed and forgets about it. The use of multiple software
updating mechanisms places a significant burden on users, as a typical Windows
user must manage 14 update mechanisms (one for the operating system and 13
for the other software installed) to keep the host fully patched [53].

This problem can also occur with shared libraries because they typically rely
on the updating mechanisms of the programs they ship with, but one of those
programs may not have automatic updates or they may have been disabled. This
scenario is common with third-party libraries deployed with programs from differ-
ent vendors, which have different update mechanisms and policies. Additionally,
we identify 69 vulnerabilities shared between Mozilla Firefox and Mozilla Thun-
derbird and 3 vulnerabilities shared between Adobe Reader and Adobe Flash;
the updating mechanisms used by most of the program versions affected by these
vulnerabilities were not fully automated and required some user interaction.

Attacks against inactive program versions through multiple content
delivery vectors. Even if all the applications that are actively used on a host
are all up to date, an attacker may deliver exploits by using a vector that will open
a different runtime or application, which remains vulnerable. Here, we discuss an
attack that allows exploiting a vulnerable version even if the patched version is
the default one. The user runs both an up-to-date Flash plugin and an old Adobe
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Air (a cross-platform runtime environment for web applications), which includes
a vulnerable Flash library (npswf32.dll). Adobe Air is used by web applications
that want to run as desktop applications across different platforms. In this case
the user runs FLVPlayer over Adobe Air. The attacker can deliver the exploit to
the user in two ways: as a .flv file to be played locally or as a URL to the .flv
file. If the user clicks on the file or URL, the file will be opened with FLVPlayer
(associated to run .flv files) and the embedded Flash exploit will compromise the
vulnerable Flash library used by Adobe Air. Similarly, Adobe Reader includes
a Flash library. The attacker can also target hosts that have up-to-date Flash
plugins, but old Adobe Reader installations, by delivering a PDF file that embeds
an exploit against the old version of the Flash library.

Attacks against inactive program versions through user environment
manipulation. The previous attack relies on the presence of applications to
which the attacker can deliver exploit content (e.g., Flash content). Here, we
discuss another attack, which allows the attacker to replace the default, up-to-
date, version of an application with a vulnerable one. The user is running two
versions of Adobe Reader, a default up-to-date version and a vulnerable version.
The attacker convinces the user to install a Firefox add-on that looks benign. The
malicious add-on has filesystem access through the XPCOM API [131]. It locates
the vulnerable and patched versions of the Adobe Reader library (nppdf32.dll)
and overwrites the patched version with the vulnerable one. When the user
visits a webpage, the malicious add-on modifies the DOM tree of the webpage to
insert a script that downloads a remote PDF exploit. The exploit is processed
by the vulnerable Adobe Reader version and exploitation succeeds. We have
successfully exploited a buffer overflow vulnerability (CVE-2009-1861) on Firefox
33.1, Adobe Reader 11.0.9.29 as patched version and Acrobat Reader 7.0.6 as
vulnerable version.

These two attacks demonstrate the dangers of inactive application versions
that are forgotten, but remain installed. Note that our goal is not to find exploits
for all the programs we analyze, but rather to provide evidence that a sufficiently
motivated attacker can find avenues to exploit multiple installations and shared
code.

3.3.2 Goals and Non-Goals

Goals. Our goal in this paper is to determine how effective are update mecha-
nisms in practice and to quantify the threats discussed in Section 3.3.1. We de-
velop techniques for characterizing the patching delay and the patch deployment
process for vulnerabilities in client-side applications, and use these techniques to
assess the impact of current software updating mechanisms on the vulnerability
levels of real hosts. The patching delay depends on the vendor’s disclosure and
patching policies and requires measuring t0 and tp for each vulnerability. t0 is
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recorded in several vulnerability databases [22, 23], which often include incom-
plete (and sometimes incorrect) information about the exact versions affected by
the vulnerability. Information about tp is scattered in many vendor advisories
and is not centralized in any database. To overcome these challenges, we focus
on analyzing the presence of vulnerable and patched program versions on real
end-hosts, in order to estimate the start of patching and to perform sanity checks
on the data recorded in public databases.

The patch deployment process depends on the vendor (e.g., its patching pol-
icy), the application (e.g., if it uses an automated updating mechanism), and the
user behavior (e.g., some users patch faster than others). The daily changes in
the population of vulnerable hosts, reflected in our end-host observations, give
insight into the progress of patch deployment. We focus on modeling this process
using statistical techniques that allow us to measure the rate at which patching
occurs and several patch deployment milestones. To characterize the initial de-
ployment phase following patch deployment (tp), we estimate the median time
to patch (tm). The point of patch completion ta is difficult to define, because
we are unable to observe the entire vulnerable host population on the Internet.
To characterize the tail of the deployment process, we estimate two additional de-
ployment milestones, (t90% and t95%), as well as the fraction of vulnerabilities that
reach these patching milestones. Our focus on application vulnerabilities (rather
than vulnerabilities in the underlying OS) allows us to compare the effectiveness
of different software updating mechanisms. These mechanisms are used for de-
ploying various kinds of updates (e.g., for improving performance or for adding
functionality); we focus on updates that patch security vulnerabilities. We also
aim to investigate the impact of application-specific and user-specific factors on
the patching process.

To interpret the results of our analysis, it is helpful to compare our goals
with those of the prior studies on vulnerability patching and software update de-
ployment. Several studies [47, 48, 49, 50] conducted remote vulnerability scans,
which allowed them to measure vulnerabilities in server-side applications, but not
in client-side applications that do not listen on the network. Another approach
for measuring the patch deployment speed is to analyze the logs of an update
management system [51], which only covers applications utilizing that updating
system and excludes hosts where the user or the system administrator has dis-
abled automated updating, a common practice in enterprise networks. Similarly,
examining the User-Agent string of visitors to a popular website [52] only applies
to web browsers, is confounded by the challenge of enumerating hosts behind
NATs, and excludes users not visiting the site. In contrast, we aim to compare
multiple client-side applications from different vendors, employing multiple patch
deployment mechanisms. Because we analyze data collected on end hosts, we do
not need to overcome the problem of identifying unique hosts over the network
and our results are not limited to active instances. Instead, we can analyze the
patch deployment for applications that are seldom used and that may remain
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vulnerable under the radar (e.g., when a user installs multiple browsers or media
players).

Applications selected. We select 10 desktop applications running on Win-
dows operating systems: 4 browsers (Chrome, Firefox, Opera, Safari), 2 multi-
media players (Adobe Flash Player, Quicktime), an email client (Thunderbird), a
document reader (Adobe Reader), a document editor (Word), and a networking
tool (Wireshark). We choose these applications because: (1) they are popular,
(2) they are among the top desktop applications with most vulnerabilities in
NVD [22], and (3) they cover both proprietary and open source applications.
Across all these applications, we analyze the patching process of 1,593 vulnera-
bilities, disclosed between 2008–2012. All programs except Word can be updated
free of charge. All programs replace the old version with the new one after an
upgrade except Adobe Reader, for which new product lines are installed in a new
directory and the old line is kept in its current directory.

Non-goals. We do not aim to analyze the entire vulnerability lifecycle. For
example, determining the precise dates when vulnerability exploits are published
is outside the scope of this paper. Similarly, we do not aim to determine when a
patch takes effect, e.g., after the user has restarted the application. Instead, we
focus on patch deployment, i.e., patch download and installation. Finally, we do
not aim to determine precisely when the patch deployment is completed, as old
versions of applications are often installed along with driver packages or preserved
in virtual machine images, and can remain unpatched for very long periods.

3.4 Datasets

We analyze six datasets: WINE’s binary reputation [21] to identify files installed
by real users, the NVD [22] and OSVDB [23] vulnerability databases to determine
vulnerable program versions and disclosure dates, the EDB [24] and WINE-AV
for exploit release dates, and VirusTotal [25] for additional file meta-data (e.g.,
AV detections, file certificates). These datasets are summarized in Table 3.1 and
detailed next.

WINE–binary reputation. The Worldwide Intelligence Network Environ-
ment (WINE) [132] provides access to data collected by Symantec’s anti-virus and
intrusion-detection products on millions of end-hosts around the world. Syman-
tec’s users have a choice of opting-in to report telemetry about security events
(e.g., executable file downloads, virus detections) on their hosts. WINE does not
include user-identifiable information. These hosts are real computers, in active
use around the world.
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Table 3.1: Summary of datasets used.

Dataset Analysis Period Hosts Vul. Exp. Files

WINE-BR 01/2008–12/2012 8.4 M – – 7.1 M
VirusTotal 10/2013-04/2014 – – – 5.1 M
NVD 10/1988-12/2013 – 59 K – –
OSVDB 01/1972-01/2012 – 77 K – –
EDB 01/2014 – – 25 K –
WINE-AV 12/2009–09/2011 – – 244 –

We use the binary reputation dataset in WINE (WINE-BR), which is collected
from 8.4 million Windows hosts that have installed Symantec’s consumer AV
products. WINE-BR records meta-data on all—benign or malicious—As shown
in Figure 3.2, the WINE hosts are concentrated in North America and Europe
with the top-20 countries accounting for 89.83% of all hosts. Since these are
real hosts, their number varies over time as users install and uninstall Symantec’s
products. Figure 3.3 shows the number of simultaneous reporting hosts over time.
It reaches a plateau at 2.5 M hosts during 2011.

The hosts periodically report new executables found. Each report includes
a timestamp and for each executable, the hash (MD5 and SHA2), the file path
and name, the file version, and, if the file is signed, the certificate’s subject and
issuer. The binaries themselves are not included in the dataset. Since we analyze
the vulnerability lifecycle of popular programs our analysis focuses on the subset
of 7.1 million files in WINE-BR reported by more than 50 users between 2008
and 2012.

NVD. The National Vulnerability Database [22] focuses on vulnerabilities in
commercial software and large open-source projects. Vulnerability disclosures re-
garding less-well-known software, e.g., small open source projects, are typically
redirected to other vulnerability databases (e.g., OSVDB). NVD uses CVE iden-
tifiers to uniquely name each vulnerability and publishes XML dumps of the full
vulnerability data. We use the NVD dumps until the end of 2013, which comprise
59,875 vulnerabilities since October 19881.

OSVDB. The Open Sourced Vulnerability Database2 [23] has the goal of pro-
viding technical information on every public vulnerability, so it contains vulnera-
bilities in more programs than NVD. OSVDB uses its own vulnerability identifier
but also references the CVE identifier for vulnerabilities with one. Up to early

1CVE identifiers start at CVE-1999-0001, but CVE-1999-* identifiers may correspond to
vulnerabilities discovered in earlier years.

2Previously called Open Source Vulnerability Database.
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Figure 3.2: Geographical distribution of reporting hosts in WINE-BR.

2012, OSVDB made publicly available full dumps of their database. However,
OSVDB has since moved away of their original open source model and public
dumps are no longer available. Our OSVDB data comes from one of the lat-
est public dumps on January 12, 2012. It contains 77,101 vulnerabilities since
January 2004.

EDB. The Exploit Database [24] is an online repository of vulnerability ex-
ploits. We crawl their web-pages to obtain meta-data on 25,331 verified exploits,
e.g., publication date and vulnerability identifier (CVE/OSVDB).

WINE–AV. The AV telemetry in WINE contains detections of known cyber
threats on end hosts. We can link some of these threats to 244 exploits of known
vulnerabilities, covering 1.5 years of our observation period. We use this dataset
to determine when the exploits start being detected in the wild.

VirusTotal. VirusTotal [25] is an online service that analyzes files and URLs
submitted by users with multiple security / anti-virus products. VirusTotal offers
a web API to query meta-data on the collected files including the AV detection
rate and information extracted statically from the files. We use VirusTotal to
obtain additional meta-data on the WINE files, e.g., detailed certificate informa-
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Figure 3.3: Reporting hosts in WINE-BR over time.

Figure 3.4: Approach overview.

tion and the values of fields in the PE header. This information is not available
otherwise as we do not have access to the WINE files, but we can query Virus-
Total using the file hash. Overall, VirusTotal contains an impressive 5.1 million
(72%) of the popular files in WINE’s binary reputation dataset.

Release histories. In addition to the 6 datasets in Table 3.1, we also col-
lect from vendor websites the release history for the programs analyzed, e.g.,
Chrome [133], Safari [134]. We use release histories to differentiate beta and re-
lease program versions and to check the completeness of the list of release versions
observed in WINE.

3.5 Vulnerability Analysis

Our study of the vulnerability lifecycle comprises two main steps. First, we de-
velop an approach to map files on end-hosts to vulnerable and patched program
versions (Sections 3.5.1 through 3.5.5). Then, we perform survival analysis to
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study how users deploy patches for each vulnerability (Section 3.5.4). Our ap-
proach to map files to vulnerable and patched program versions is novel, generic,
and reusable. While it comprises some program-specific data collection, we have
successfully adapted and applied our approach to 10 programs from 7 software
vendors. Ensuring the generality of the approach was challenging as each vendor
has their own policies. Another challenge was dealing with the scattered, often
incomplete, and sometimes incorrect data available in public repositories. We
are publicly releasing the results of our data cleaning for the benefit of the com-
munity (Appendix 3.9). We designed our approach to minimize manual work so
that it can be applied to hundreds of vulnerabilities for each program and that
adding new programs is also easy. The approach is not specific to WINE; it can
be used by any end host application that periodically scans the host’s hard-drive
producing tuples of the form <machine, timestamp, file, filepath> for the exe-
cutable files it finds. Most antivirus software and many other security tools fit
this description.

Figure 3.4 summarizes our approach. First, we pre-process our data (Sec-
tion 3.5.1). Then, we identify version-specific files that indicate a host has in-
stalled a specific program version (Section 3.5.2). Next, our vulnerability re-
port generation module automatically identifies which files indicate vulnerable
and non-vulnerable versions for each vulnerability (Section 3.5.3). We detail our
cleaning of NVD data in Appendix 3.9. Finally, we perform a survival analysis
for each vulnerability (Section 3.5.4).

3.5.1 Data Pre-Processing

The first step in our approach is to pre-process the 7.1 million files in our dataset
to have the information needed for the subsequent steps. Note that while we focus
on 10 selected applications, we do not know a priori which files belong to those.
We first assign to each file (identified by MD5 hash) a default filename, first
seen timestamp, and file version. The default filename is selected by majority
voting across all WINE hosts reporting files. Since most users do not modify
default filenames and the files are reported by at least 50 hosts, the filename used
by the largest number of hosts is highly likely the vendor’s default. The first
seen timestamp is the earliest time that the file was reported by any host. For
the file version, each Windows executable contains version information in its PE
header, which WINE normalizes as four decimal numbers separated by dots, e.g.,
9.0.280.0.

In addition, we query VirusTotal for the files’ metadata including the number
of AV products flagging the file as malicious and the file certificate. We consider
malware the 1.3% of the 7.1 M files flagged by 3 or more AV products as malicious,
removing them from further analysis. If the file has a valid certificate, we extract
the publisher and product information from its metadata.
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Table 3.2: Summary of the selected programs.

Configuration WINE NVD vulnerabilities Auto Updates Introd.
Program Leading Filename Lines Files Ver. Rel. Total Selected Clust. Ver. Date
Chrome chrome.dll 1 544 531 531 886 545 (61%) 87 1.0 2008-12-12
Firefox firefox.exe 10 457 440 140 1,013 226 (22%) 88 15 2012-08-26
Flash npswf32%.dll 12 187 121 121 316 123 (38%) 22 11.2 2012-03-27
Opera opera.exe 1 95 90 90 25 10 (40%) 8 10 2009-08-30
Quicktime quicktimeplayer.exe 1 68 43 41 206 67 (33%) 15 - 2008-01-01
Reader acrord32.dll 9 102 73 66 330 159 (48%) 30 10.1 2011-06-14
Safari safari.exe 1 35 29 26 460 227 (49%) 39 - 2008-01-01
Thunderbird thunderbird.exe 17 91 91 83 594 31 (15%) 60 17 2012-11-20
Wireshark wireshark.exe 1 56 38 38 261 110 (42%) 66 1.10.0 2013-06-05
Word winword.exe 7 247 104 7 92 36 (39%) 12 2003 2005-06-01

TOTAL 2,006 1,610 1,242 4,347 1,593 (39%) 408

3.5.2 Mapping Files to Program Versions

To determine if a WINE host installed a specific program version we check if
the host has installed some files specific to that program version. Such version-
specific files should not be part of other program versions (or other programs) and
should not correspond to installer files (e.g., firefox setup 3.0.7.exe) but rather
to the final executables or libraries (e.g., firefox.exe) that are only present on the
host’s file system if the user not only downloaded the program version, but also
installed it. The goal is to generate a list of triples < h, p, vp > capturing that
the presence of a file with hash h in a host indicates the installation of program
p and version vp.

An intuitive method to identify version-specific files would be to install a
program version, monitoring the files it installs. Files installed by one program
version but not by any other version would be version-specific. However, such ap-
proach is difficult to generalize because for some programs it is not easy to obtain
all the program versions released between 2008–2012, and because automating
the installation process of arbitrary programs is challenging given the diversity
in installation setups and required user interaction.

We have developed an alternative analyst-guided approach to identify version-
specific files. Our approach leverages the fact that large software vendors, e.g.,
those of our selected programs, sign their executables to provide confidence in
their authenticity, and that, to keep software development manageable, they keep
filenames constant across program versions (e.g., Firefox’s main executable is
named firefox.exe in all program versions) and update the file version of files
modified in a new program version.

For each program analyzed, we first query our database for how many differ-
ent file versions each default filename associated with the program has (e.g., files
with vendor “Adobe%” and product “%Reader%”3). We select the non-installer
filename with most file versions as the leading filename. In 7 of our 10 programs
the leading filename corresponds to the main executable (e.g., firefox.exe, wire-
shark.exe) and in other 2 to the main library (chrome.dll for Chrome, acrord32.dll

3We use % as a wildcard as in SQL queries
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for Reader). For Flash Player, Adobe includes the version in the default filename
since March 2012, e.g., npswf32 11 2 202 18.dll, so we use a wildcard to define
the leading filename, i.e., npswf32%.dll.

Mapping file version to program version. The file version of files with the
leading filename may correspond directly to the program version (e.g., chrome.dll
5.0.375.70 indicates Chrome 5.0.375.70), to a longer version of the program ver-
sion (e.g., acrord32.dll 9.1.0.163 indicates Reader 9.1), or the relationship may not
be evident, (e.g., firefox.exe 1.9.0.3334 indicates Firefox 3.0.7). For each program
we build a version mapping, i.e., a list of triples < vf , vp, type > indicating that
file version vf corresponds to program version vp. We use the type to indicate
the maturity level of the program version, e.g., alpha, beta, release candidate,
release. We limit the patch deployment analysis to release versions of a program.
The mapping of file to program versions is evident for 7 programs, the exception
being Safari and old versions of Firefox and Thunderbird4. For Safari we use its
public release history [134] and for Firefox/Thunderbird we leverage the fact that
the developers store the program version in the product name field in the exe-
cutable’s header, available in the VirusTotal metadata. For the program version
type, we leverage the program release history from the vendor’s site.

Checking for missing versions. In most cases, the file with the leading file-
name is updated in every single program version. However, for Adobe Reader we
found a few program versions that do not modify the file with the leading file-
name but only other files (e.g., Adobe Reader 9.4.4 did not modify acrord32.dll
or acrord32.exe). To identify if we are missing some program version we compare
the version mapping with the vendor’s release history. For any missing version,
we query our database for all files with the missed file version and signed by the
program’s vendor (regardless of the filename). This enables identifying other files
updated in the missing version, e.g., nppdf32.dll in Reader 9.4.4. We add one of
these file hashes to our list of version-specific files. Of course, if the vendor did
not update the version of any executable file in a new program version, we cannot
identify that program version.

Product lines. Some programs have product lines that are developed and re-
leased with some overlap in time. For our analysis it is important to consider
product lines because a vulnerability may affect multiple lines and each of them
needs to be patched separately. For example, vulnerability CVE-2009-3953 is
patched in versions 8.2 and 9.3 of Adobe Reader, which belong to lines 8 and 9
respectively. To map product versions to product lines we use regular expressions.
Next section describes our handling of product lines.

4Firefox and Thunderbird use file versions similar to program versions since Firefox 5 and
Thunderbird 5.
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As the output of this process the analyst produces a program configuration file
that captures the list of version-specific files, the version mapping, and the prod-
uct line regular expressions. This configuration is produced once per program,
independently of the number of program vulnerabilities that will be analyzed.

The left-side section of Table 3.2 summarizes the configuration information for
the 10 selected programs: the program name, the vendor, the leading filename,
and the number of product lines. The right-side section shows on what date, and
in which version, the application started using an automated updating mecha-
nism. The WINE section captures the number of version-specific files (Files), the
number of file versions for those files (Ver.), and the number of program versions
they correspond to (Rel.) The 3 numbers monotonically decrease since two files
may occasionally have the same file version, e.g., 32-bit and 64-bit releases or
different language packs for the same version. Two file versions may map to the
same program version, e.g., beta and release versions.

Note that we start with 7.1 M files and end up with only 2,006 version-specific
files for the 10 programs being analyzed. This process would be largely simplified
if program vendors made publicly available the list of file hashes corresponding
to each program version.

3.5.3 Generating Vulnerability Reports

Next, our vulnerability report generation module takes as input the configuration
file for a program and automatically determines for each vulnerability for the
program in NVD, which versions are vulnerable and not vulnerable.

For this, it first queries our database for the list of NVD vulnerabilities affect-
ing the program. If a vulnerability affects multiple programs (e.g., Firefox and
Thunderbird), the vulnerability will be processed for each program. For each vul-
nerability, it queries for the list of vulnerable program versions in NVD and splits
them by product line using the regular expressions in the configuration. For each
vulnerable product line (i.e., with at least one vulnerable version), it determines
the range of vulnerable program versions [xl, yl] in the line. Note that we have
not seen lines with multiple disjoint vulnerable ranges. Finally, it annotates each
version-specific file as not vulnerable (NV), vulnerable (V), or patched (P). For
a file specific to program version vp, it compares vp with the range of vulnerable
versions for its line. If the line is not vulnerable, the file is marked as not vul-
nerable. If the line is vulnerable but vp < xl, it is marked as not vulnerable; if
xl ≤ vp ≤ yl as vulnerable; and if vp > yl as patched.

We discard vulnerabilities with no vulnerable versions, no patched versions, or
with errors in the NVD vulnerable version list. We may not find any vulnerable
versions for vulnerabilities in old program versions (that no WINE host installs
between 2008–2012). Similarly, we may find no patched versions for vulnerabil-
ities disclosed late in 2012 that are patched in 2013. We detail how we identify
NVD errors in Appendix 3.9.
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Multiple vulnerabilities may affect exactly the same program versions. Such
vulnerabilities have the same vulnerable population and identical patching pro-
cesses. We therefore group them together into vulnerability clusters to simplify
the analysis. All vulnerabilities in a cluster start patching on the same date, but
each vulnerability may have a different disclosure date.

The “NVD vulnerabilities” section of Table 3.2 shows the total number of
vulnerabilities analyzed for each program (Total), the selected vulnerabilities after
discarding those with no vulnerable or patched versions, or with errors (Selected),
and the number of vulnerability clusters (Clust.). Overall, we could analyze 39%
of all vulnerabilities in the 10 programs.

Patching delay. For each cluster, we compute the disclosure date t0 as the
minimum of the disclosure dates in NVD and OSVDB. The start of patching tp is
the first date when we observe a patched version in the field data from WINE. The
start of patching date often differs from the disclosure date and is not recorded
in NVD or OSVDB. The patching delay for a cluster is simply pd = tp − t0.

3.5.4 Survival Analysis

To analyze the patch deployment speed we employ survival analysis techniques,
which are widely used in medicine and biology to understand the mortality rates
associated with diseases and epidemics [128]. In our case, survival analysis mea-
sures the probability that a vulnerable host will “survive” (i.e., remain vulnerable)
beyond a specified time. Intuitively, the population of vulnerable hosts decreases
(i.e., the vulnerability “dies” on a host) when one of two death events happen:
(1) a user installs a patched program version or (2) a user installs a non-vulnerable
program version. While both events decrease the vulnerable population, only the
first one is directly related to patch deployment. When we analyze patch deploy-
ment we consider only the first death event; when analyzing vulnerability decay
we consider both.

Survival function. To understand how long a vulnerability remains exploitable
in the wild, we consider that the vulnerability lifetime is a random variable T .
The survival function S(t) captures the likelihood that the vulnerability has re-
mained unpatched until time t:

S(t) = Pr[T > t] = 1− F (t)

where F (t) is the cumulative distribution function.
We estimate S(t) for each vulnerability cluster. Figure 3.5 illustrates the

output of this analysis through an example. Using our S(t) estimations, we
can compare the deployment of two software updates in Chrome. Both updates
reached 50% of the vulnerable hosts in a few days, days, but update #1 reached
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Figure 3.5: Examples of vulnerability survival, illustrating the deployment of two
updates for Google Chrome.

90% of vulnerable hosts in 52 days, while update #2 needed 4× as much time to
reach the same milestone.

The survival function describes how the probability of finding vulnerable hosts
on the Internet decreases over time. S(t) is 1 in the beginning, when no vulnerable
hosts have yet been patched, and 0 when there are no vulnerable hosts left.
By definition, S(t) is monotonically decreasing; it decreases when one of the
two death events mentioned earlier occurs on a vulnerable host. In our analysis
of the patch deployment process, the installation of a patched version closes
the vulnerability on the host. In this case, the point in time when S(t) starts
decreasing corresponds to the start of patching tp, which we use to estimate the
patching delay as described in Section 3.5.3. In our analysis of the vulnerability
decay process, the installation of either a patched version or a non-vulnerable
version closes the vulnerability window. The point where S(t) starts decreasing
corresponds to the start of the vulnerability decay (td in Figure 3.1). In both
cases, the host’s death event for a given vulnerability corresponds to the first
installation of a patched or non-vulnerable version after the installation of a
vulnerable version on the host.
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The time needed to patch a fraction α of vulnerable hosts corresponds to the
inverse of the survival function: tα = S−1(1−α). The survival function allows us
to quantify the milestones of patch deployment such as the median time to patch
tm = S−1(0.5) and the time to patch most vulnerable hosts: t90% = S−1(0.1) and
t95% = S−1(0.05).

Right censoring and left truncation. When estimating S(t) we must ac-
count for the fact that, for some vulnerable hosts, we are unable to observe the
patching event before the end of our observation period. For example, some hosts
may leave our study before patching, e.g., by uninstalling the Symantec product,
by opting out of data collection, or by upgrading the OS. In statistical terms,
these hosts are independently right-censored. We determine that a host becomes
right censored by observing the last download report (not necessarily for our se-
lected applications) in WINE. For these hosts, we do not know the exact time
(or whether) they will be patched; we can only ascertain that they had not been
patched after a certain time. In other words, when a host becomes censored at
time t, this does not change the value of S(t); however, the host will no longer be
included in the vulnerable host population after time t. In addition, we cannot
determine whether vulnerable versions have been installed on a host before the
start of our observation period, so some vulnerable hosts may not be included in
the vulnerable population. In statistical terms, our host sample is left-truncated.
Right-censoring and left-truncation are well studied in statistics, and in this paper
we compute the values of S(t) using the Kaplan-Meier estimator, which accounts
for truncated and censored data. We compute this estimator using the survival

package for R [135]. We consider that we have reached the end of the observa-
tion period for a vulnerability when the vulnerable population falls below 3 hosts
or when we observe that 95% or more of the vulnerable hosts become censored
within 5% of the total elapsed time. This prevents artificial spikes in the hazard
function at the end of our observation period, produced by a large decrease in
the vulnerable host population due to right-censoring.

3.5.5 Threats to Validity

Selection bias. The WINE user population is skewed towards certain geo-
graphical locations; for example, 56% of the hosts where the data is collected are
located in the United States (Figure 3.2). Additionally, WINE’s binary reputa-
tion only covers users who install anti-virus software. While we cannot exclude
the possibility of selection bias, the prevalence of anti-virus products across dif-
ferent classes of users and the large population analyzed in our study (1,593
vulnerabilities on 8.4 million hosts) suggests that our results have a broad ap-
plicability. Similarly, our study considers only Windows applications, but the
popular client applications we analyze are cross-platform, and often use the same
patching mechanism on different platforms. Moreover, cyber attacks have pre-
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dominantly targeted the Windows platform.

Sampling bias. The WINE designers have taken steps to ensure WINE data is
a representative sample of data collected by Symantec [136]. For our study, this
means that the vulnerability survival percentages we compute are likely accurate
for Symantec’s user base, but the absolute sizes of the vulnerable host population
are underestimated by at least one order of magnitude.

Data bias. The WINE binary reputation does not allow us to identify program
uninstalls. We can only identify when a user installs new software and whether
the newly installed version overwrote the previous one (i.e., installed on the same
path). The presence of uninstalls would cause us to under-estimate the rate of
vulnerability decay, as the hosts that have completely removed the vulnerable ap-
plication would be counted as being still vulnerable at the end of our observation
period. We do not believe this is a significant factor, as we observe several vul-
nerabilities that appear to have been patched completely during our observation
(for example, update #1 from Figure 3.5).

3.6 Evaluation

We analyze the patching of 1,593 vulnerabilities in 10 applications, which are
installed and are actively used on 8.4 M hosts worldwide. We group these vul-
nerabilities into 408 clusters of vulnerabilities patched together, for an average of
3.9 vulnerabilities per cluster. We conduct survival analysis for all these clusters,
over observation periods up to 5 years.

In this section, we first summarize our findings about the update deploy-
ment process in each application (Section 3.6.1). Then, we analyze the impact of
maintaining parallel product lines on the patching delay (Section 3.6.2), the race
between exploit creators and patch deployment (Section 3.6.3), the opportuni-
ties for patch-based exploit generation (Section 3.6.4), and the impact of parallel
installations of an application on patch deployment (Section 3.6.5). Next, we ana-
lyze the time needed to reach several patch deployment milestones (Section 3.6.6)
and, finally, the impact of user profiles and of automated update mechanisms on
the deployment process (Section 3.6.7).

3.6.1 Patching in Different Applications

The prior theoretical work on optimal patch-management strategies makes a num-
ber of assumptions, e.g., that there is an important trade-off between the patching
delay and the amount of testing needed before releasing patches, or that patch
deployment is instantaneous [14]. In this section, we put such assumptions to the
test. We focus on the patching delay and on two patch deployment milestones:
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Table 3.3: Milestones for patch deployment for each program (medians reported).

Program %Vers.
Auto

Vul.
Pop.

Patch
Delay

Days
to
patch
(%clust.)
tm t90%

Chrome 100.0% 521 K -1 15 (100%) 246 (93%)
Firefox 2.7% 199 K -5.5 36 (91%) 179 (39%)
Flash 14.9% 1.0 M 0 247 (59%) 689 (5%)
Opera 33.3% 2 K 0.5 228 (100%) N/A (0%)
Quicktime 0.0% 315 K 1 268 (93%) 997 (7%)
Reader 12.3% 1.1 M 0 188 (90%) 219 (13%)
Safari 0.0% 146 K 1 123 (100%) 651 (23%)
Thunderbird 3.2% 11 K 2 27 (94%) 129 (35%)
Wireshark 0.0% 1 K 4 N/A (0%) N/A (0%)
Word 37.4% 1.0 M 0 79 (100%) 799 (50%)

reaching 50% and 90% of the vulnerable hosts. For this analysis, we consider
only the deployment of a patched version as a vulnerability death event, and we
aggregate the results of the survival analysis for each of the 10 selected applica-
tions. Because it is difficult to compare t90% for two applications with different
vulnerable populations, we report both the time to reach this milestone and the
percentage of updates that reach it. Applications with effective updating mech-
anisms will be able to reach 90% deployment for a large percentage of updates.
The time needed to reach this milestone illustrates how challenging it is to patch
the last remaining hosts within a large vulnerable population.

Table 3.3 summarizes the patch deployment milestones for each application.
The second column shows the percentage of versions that were updated auto-
matically. Chrome had an automated updating mechanism since its first version;
Word used Microsoft Update throughout the study; Wireshark had completely
manual updates throughout our study; Safari and Quicktime use the Apple Soft-
ware Updater that periodically checks and prompts the user with new versions
to install; the remaining programs introduced silent updates during our study.

The next column shows the vulnerable host population (we report the median
across all vulnerability clusters for the program). For 7 out of the 10 applications
the median vulnerable population exceeds 100,000 hosts and for 3 (Flash, Reader,
Word) it exceeds one million hosts. In comparison, the 2014 Heartbleed vulnera-
bility in OpenSSL affected 1.4 million servers [137], and the Internet worms from
2001–2004 infected 12K–359K hosts [47, 138, 139]. As explained in Section 3.5.5
the host population in our study only reflects the hosts in WINE, after sampling.
The vulnerable host population in the unsampled Symantec data is likely to be
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at least one order of magnitude higher [136], and the real vulnerable population
when including hosts without Symantec software much larger. These numbers
highlight that vulnerabilities in client-side applications can have significant larger
vulnerable populations than server-side vulnerabilities.

The fourth column reports the median patch delay (in days) for the vulnera-
bility clusters. Chrome and Firefox have negative values indicating that patching
starts before disclosure for most of their clusters. Flash, Reader, and Word have
zero values indicating that Adobe and Microsoft are coordinating the release of
patches and advisories, e.g., at Patch Tuesday for Microsoft. The remaining pro-
grams have positive patch delay; the larger the patch delay the longer users are
exposed to published vulnerabilities with no patch available.

The last two columns capture the times needed to reach 50% and 90% patch
deployment (we report medians across clusters), as well as the percentage of
clusters that reached these milestones before the end of our observation period.
Chrome has the shortest tm, followed by Thunderbird and Firefox. At the other
extreme, Wireshark exhibits the slowest patching: no cluster reaches 50% patch
deployment by the end of 2012—not even for vulnerabilities released in 2008.
Excluding Wireshark and Flash, all applications reach 50% patching for over
90% of vulnerability clusters, with Chrome, Opera, Safari, and Word reaching
this milestone for 100% of clusters. At t90 only Chrome patches more than 90% of
the vulnerability clusters. We also observe that Firefox and Thunderbird appear
to reach this milestone faster than Chrome, but this comparison is biased by the
fact that for these two applications only 35–40% of clusters reach this milestone,
in contrast with Chrome’s 93%.

Chrome’s automated update mechanism results in the fastest patching among
the 10 applications. However, it still takes Chrome 246 days (approximately
8.2 months) to achieve 90% patching. This finding contradicts prior research
that concluded that 97% of active Chrome instances are updated to the new
version within 21 days after the version’s release of a new version [52]. The
main difference in our approach is that, because we analyze end-host data, our
measurements include inactive applications, which are installed on a host but
rarely used. Moreover, our measurements do not suffer from confounding factors
such as applications on hosts behind NATs, which complicate the interpretation
of version numbers extracted from network traces.

3.6.2 Patching Delay

In this section we ask the questions: How quickly are patches released, following
vulnerability disclosures? and What is the impact of maintaining multiple product
lines on these releases? The patch can be released on the disclosure date (e.g.,
coordinated disclosure, where the vendor is notified and given some time to create
a patch before publicizing the vulnerability), after the disclosure date, (e.g., dis-
covery of a zero-day attack in the wild or full disclosure, where the vulnerability is
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Figure 3.6: Distribution of the patching delay. For each vulnerability, we compare
the start of patching with the disclosure date. The left plot shows how many
vulnerabilities start patching within a week (±7 days) or a month (±30 days) of
disclosure and how many start patching outside these intervals. The right plot
shows a histogram of the patch delay (each bar corresponds to a 30-day interval).

publicized despite the lack of a patch in order to incentivize the vendor to create
the patch), or before disclosure (e.g., the vulnerability does not affect the latest
program version). Thus, the patching delay may be positive, zero, or negative.
Figure 3.6 illustrates the distribution of the patching delay for all the 1,593 vul-
nerabilities in our study. We find that the start of patching is strongly correlated
with the disclosure date (correlation coefficient r = 0.994). Moreover, Figure 3.6
shows that 77% of the vulnerabilities in our study start patching within 7 days
before or after the disclosure dates. If we extend this window to 30 days, 92% of
vulnerabilities start patching around disclosure. This suggests that software ven-
dors generally respond promptly to vulnerability disclosures and release patches
that users can deploy to avoid falling victim to cyber attacks.

It is interesting to observe that maintaining multiple parallel lines does not
seem to increase the patching delay. Firefox, Flash, Reader, Thunderbird and
Word all have multiple product lines; in fact, each vulnerability cluster in these
products affects all the available product lines. When a vulnerability affects mul-
tiple product lines, patches must be tested in each program line, which may delay
the release of patches. However, Table 3.3 suggests that the median patching de-
lay is not significantly higher for these applications than for the applications with
a single product line, like Google Chrome. We note that this doesn’t suggest that
multiple product lines do not impact software security, as there may be additional
software engineering issues associated with product lines; however, we do not find
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empirical evidence for these effects.
When we take into consideration both types of vulnerability death events in

the survival analysis, (i.e., the installation of non-vulnerable versions contributes
to the vulnerability decay), we observe that the vulnerable host population starts
decaying almost as soon as a vulnerable version is released, as some users revert to
older versions. In this case, 94% of the clusters start decaying earlier than 30 days
before the disclosure date. While this is a mechanism that could prevent zero-day
exploits in the absence of a patch, users are not aware of the vulnerability before
its public disclosure, and the vulnerability decay due to non-vulnerable versions
is small.

3.6.3 Patches and Exploits

We now ask the question: When attackers create exploits for these vulnerabilities,
what percentage of the host population can they expect to find still vulnerable?
This has important security implications because exploit creators are in a race
with the patch deployment: once the vulnerability is disclosed publicly, users and
administrators will start taking steps to protect their systems.

We use the WINE-AV dataset to identify attacks for specific vulnerabilities.
This dataset only covers 1.5 years of our observation period (see Table 3.1). After
discarding vulnerabilities disclosed before the start of the WINE-AV dataset and
intersecting the 244 exploits in WINE-AV with our vulnerability list, we are left
with 13 exploits, each for a different vulnerability. We also add 50 vulnerabilities
that have an exploit release date in EDB. For each of the 54 vulnerabilities in
the union of these two sets, we extract the earliest record of the exploit in each
of the two databases, and we determine the value of the survival function S(t)
on that date. In this analysis, we consider both types of death events, because
installing non-vulnerable program versions also removes hosts from the population
susceptible to these exploits.

Figure 3.7 illustrates the survival levels for these vulnerabilities; on the right
of the X-axis 100% (1.00) of hosts remain vulnerable, and on the left there are
no remaining vulnerable hosts. Each vulnerability is annotated with the number
of days after disclosure when we observe the first record of the exploit. This ex-
ploitation lag is overestimated because publicizing an exploit against an unknown
vulnerability amounts to a disclosure (for EDB) and because AV signatures that
can detect the exploit are often deployed after disclosure (for WINE-AV). For ex-
ample, while CVE-2011-0611, CVE-2011-0609, CVE-2010-3654, CVE-2010-2862,
CVE-2010-1241, and CVE-2011-0618 are known to have been exploited in zero-
day attacks [140, 141, 17], the exploitation lag is ≥ 0. In consequence, the
vulnerability survival levels in Figure 3.7 must be interpreted as lower bounds,
as the exploits were likely released prior to the first exploit records in WINE-AV
and EDB.

Additionally, these results illustrate the opportunity for exploitation, rather
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than a measurement of the successful attacks. Even if vulnerabilities remain
unpatched, end-hosts may employ other defenses against exploitation, such as
anti-virus and intrusion-detection products or mechanisms such as data execution
prevention (DEP), address space layout randomization (ASLR), or sandboxing.
Our goal is therefore to assess the effectiveness of vulnerability patching, by itself,
in defending hosts from exploits.

All but one of the real-world exploits in WINE found more than 50% of hosts
still vulnerable. Considering both databases, at the time of the earliest exploit
record between 11% and 100% of the vulnerable population remained exploitable,
and the median survival rate was 86%. As this survival rate represents a lower
bound, the median fraction of hosts patched when exploits are released is at most
14%.

3.6.4 Opportunities for Patch-Based Exploit Generation

Attackers have an additional trump card in the race with the patch deployment:
once a patch is released, it may be used to derive working exploits automatically,
by identifying the sanitization checks added in the patched version and generat-
ing inputs that fail the check [129]. While prior work has emphasized the window
of opportunity for patch-based exploit generation provided by slow patch deploy-
ment, it is interesting to observe that in some cases a vulnerability may affect
more than one application. For example, Adobe Flash vulnerability CVE-2011-
0611 affected both the Flash Player and Acrobat Reader (which includes a library
allowing it to play Flash objects embedded in PDF documents). For Reader, the
patching started 6 days later than for Flash, giving attackers nearly one week to
create an exploit based on the Flash patch.

In our dataset, 80 vulnerabilities affect common code shared by two applica-
tions. The time between patch releases ranges from 0 (when both patches are
released on the same date, which occurs for 7 vulnerabilities) to 118 days, with
a median of 11 days. 3 Flash vulnerabilities also affect Adobe Reader (as in the
case of CVE-2011-0611 described above), and the patches for Flash were released
before or on the same day as the Reader patches. 7 vulnerabilities affect the
Chrome and Safari browsers, which are based on the WebKit rendering engine;
in one case, the Safari patch was released first, and in the other cases the Chrome
patch was released first. 1 vulnerability affects Chrome and Firefox, which use
the Angle5 library for hardware-accelerated graphics, and in this case the Chrome
patch was released first. Finally, 69 vulnerabilities affect Firefox and Thunder-
bird, which share multiple Mozilla libraries, and in all these cases the Firefox
patches were released before or on the same day as the Thunderbird patches.

These delays in patching all the applications affected by shared vulnerabili-
ties may facilitate the creation of exploits using patch-based exploit generation

5https://code.google.com/p/angleproject/
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techniques [129]. In practice, however, the attacker may experience additional
delays in acquiring the patch, testing the exploit and delivering it to the intended
target. We therefore compare the time between patch releases with our empirical
observations of the exploitation lag, illustrated in Figure 3.7. While the median
exploitation lag is slightly longer (19 days) the two distributions largely overlap,
as shown in Figure 3.8. In consequence, the time between patch releases for ap-
plications sharing code is comparable to the typical time that attackers need to
create exploits in practice. This is a serious threat because an exploit derived
from the first patch to be released is essentially a zero-day exploit for the other
applications, as long as patches for these applications remain unavailable.

3.6.5 Impact of Multiple Installations on Patch Deploy-
ment

While in Section 3.6.3 we investigated the threat presented by the time elapsed
between patch releases for applications with common vulnerabilities, we now ask
the question how do multiple versions of an application, installed in parallel,
impact the patch deployment process? Failing to patch all the installed versions
leaves the host exposed to the attack described in Section 3.3.1. This is a common
situation: for example, our analysis suggests that 50% of WINE users who have
installed the Flash plugin have Adobe Air installed as well.

Figure 3.9 compares the patching of CVE-2011-0611 in Flash and Adobe
Reader. This vulnerability is a known zero-day attack, discovered on 12 April
2011. For Flash, the patching started 3 days after disclosure. The patching rate
was high, initially, followed by a drop and then by a second wave of patching
activity (suggested by the inflection in the curve at t = 43 days). The second
wave started on 25 May 2011, when the vulnerability survival was at 86%. Ac-
cording to analyst reports, a surge of attacks exploiting the vulnerability started
on 15 May 2011 [142]. The second wave of patching eventually subsided, and
this vulnerability did not reach 50% completion before the end of our observa-
tion period. Perhaps because of this reason, CVE-2011-0611 was used in 30% of
spear phishing attacks in 2011 [143]. In contrast, for Reader the patching started
later, 9 days after disclosure, after CVE-2011-0611 was bundled with another vul-
nerability in a patch). Nevertheless, the patch deployment occurred faster and
reached 50% completion after 152 days. This highlights the fact that, in general,
Adobe Reader patched faster than Flash Player, as Table 3.3 indicates.

This highlights the magnitude of the security threat presented by keeping
multiple versions installed on a host, without patching all of them. Even if
some of these installations are used infrequently, the attacker may still be able
to invoke them, as demonstrated in Section 3.3.1. Moreover, a user patching the
frequently used installation in response to news of an exploit active in the wild
may unknowingly remain vulnerable to attacks against the other versions that
remain installed.
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3.6.6 Patching Milestones

In this section we ask the question: How quickly can we deploy patches on all
the vulnerable hosts? Figure 3.10 illustrates the distribution for the median time-
to-patch (tm), and the time needed to patch 90% and 95% of the vulnerable
hosts (t90% and t95%, respectively), across all vulnerability clusters for the 10
applications. We find that the rate of updating is high in the beginning: 5%
of clusters reach tm within 7 days, 29% of clusters reach it within 30 days and
54% of clusters reach it within 100 days. Figure 3.10a suggests that the median
time-to-patch distribution is decreasing, with a long tail, as most vulnerability
clusters reach this milestone within a few weeks, but a few clusters need as much
as three years to reach it.

In contrast, the distribution of the time needed to reach high levels of update
completion seems to have two modes, which are not visible in the distribution of
tm. The bimodal pattern starts taking shape for t90% (Figure 3.10b) and is clear
for t95% (Figure 3.10c). We observe that the first mode stretches 150 days after
the start of patching, suggesting that, even for the vulnerabilities that exhibit the
highest updating rate, the median time to patch may be up to several months.

3.6.7 Human Factors Affecting the Update Deployment

Finally, we analyze whether specific user profiles and automated patching mech-
anisms have a positive effect on how fast the vulnerable applications are patched.
To this end, we first define three user categories that are presumably more
security-aware than common users: professionals, software developers, and se-
curity analysts. We classify WINE hosts into these 3 categories by first assigning
a set of applications to each category and then checking which hosts have installed
some of these applications. A host can belong to multiple categories. For profes-
sionals we check for the existence of applications signed, among others, by SAP,
EMC, Sage Software, and Citrix. For software developers we check for software
development applications (Visual Studio, Eclipse, NetBeans, JDK, Python) and
version control systems (SVN, Mercurial, Git). For security analysts, we check for
reverse engineering (IdaPro), network analysis (Wireshark), and forensics tools
(Encase, Volatility, NetworkMiner). Using these simple heuristics, we identify
112,641 professionals, 32,978 software developers, and 369 security analysts from
our dataset.

We perform survival analysis for each user category separately to obtain the
median time-to-patch. Table 3.4 presents the results for Adobe Reader, Flash,
Firefox, and the mean for the 10 applications. We focus on these three applica-
tions because they are popular and because the update mechanisms used in most
of the versions in our study were manual and, therefore, required user interac-
tion. In addition, we are interested in checking if automated update mechanisms
improve the success of the patching process, and these three applications started
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Table 3.4: Number of days needed to patch 50% of vulnerable hosts, for different
user profiles and update mechanisms.

Categories
Median time-to-patch (% reached)

All Reader Flash Firefox

Professionals 30 (79%) 103 (90%) 201 (73%) 25 (92%)
Software Developers 24 (80%) 68 (90%) 114 (86%) 23 (90%)
Security Analyst 18 (93%) 27 (87%) 51 (91%) 13 (89%)

All users 45 (78%) 188 (90%) 247 (60%) 36 (91%)

Silent Updates 27 (78%) 62 (90%) 107 (86%) 20 (89%)
Manual Updates 41 (78%) 97 (90%) 158 (81%) 26 (88%)

using automated updates in 2012. As shown in Table 3.4, all 3 user categories
reach 50% patching faster than the common category encompassing all users.
This indicates that these categories react to patch releases more responsibly than
the average user. Among our three categories, the security analysts patch fastest,
with a patching rate almost three times higher than the general-user category.

The bottom of Table 3.4 we compare manual and automated updating shows
the survival analysis results when splitting the program versions into those with
manual and automated patching, based on when silent updates were introduced
by the program. As expected, automated update mechanisms significantly in-
crease patching deployment, improving security.

3.7 Related Work

Several researchers [13, 15, 16] have proposed vulnerability lifecycle models, with-
out exploring the patch deployment phase in as much detail as we do. Prior work
on manual patch deployment has showed that user-initiated patches [47, 48, 49,
50] occur in bursts, leaving many hosts vulnerable after the fixing activity sub-
sides. After the outbreak of the Code Red worm, Moore et. at [47] probed
random daily samples of the host population originally infected and found a slow
patching rate for the IIS vulnerability that allowed the worm to propagate, with
a wave of intense patching activity two weeks later when Code Red began to
spread again. Rescorla [48] studied a 2002 OpenSSL vulnerability and observed
two waves of patching: one in response to the vulnerability disclosure and one
after the release of the Slapper worm that exploited the vulnerability. Each fixing
wave was relatively fast, with most patching activity occurring within two weeks
and almost none after one month.

Rescorla [48] modeled vulnerability patching as an exponential decay process
with decay rate 0.11, which corresponds to a half-life of 6.3 days. Ramos [49]
analyzed data collected by Qualys through 30 million IP scans and also reported
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a general pattern of exponential fixing for remotely-exploitable vulnerabilities,
with a half-life of 20-30 days. However, patches released on an irregular schedule
had a slower patching rate, and some do not show a decline at all. While tm for the
applications employing silent update mechanisms and for two other applications
(Firefox and Thunderbird) is approximately in the same range with these results,
for the rest of the applications in our study tm exceeds 3 months.

Yilek et al. [50] collected daily scans of over 50,000 SSL/TLS Web servers,
in order to analyze the reaction to a 2008 key generation vulnerability in the
Debian Linux version of OpenSSL. The fixing pattern for this vulnerability had
a long and flat curve, driven by the baseline rate of certificate expiration, with
an accelerated patch rate in the first 30 days and with significant levels of fixing
(linked to activity by certification authorities, IPSes and large Web sites) as
far out as six months. 30% of hosts remained vulnerable six months after the
disclosure of the vulnerability. Durumeric et al. [18] compared these results with
measurement of the recent Heartbleed vulnerability in OpenSSL and showed that
in this case the patching occurred faster, but that, nevertheless, more than 50%
of the affected servers remained vulnerable after three months.

While the references discussed above considered manual patching mechanisms,
the rate of updating is considerably higher for systems that employ automated
updates. Gkantsidis et al. [51] analyzed the queries received from 300 million
users of Windows Update and concluded that 90% of users are fully updated
with all the previous patches (in contrast to fewer than 5%, before automated
updates were turned on by default), and that, after a patch is released, 80% of
users receive it within 24 hours. Dübendorfer et al. [52] analyzed the User-Agent
strings recorded in HTTP requests made to Google’s distributed Web servers, and
reported that, within 21 days after the release of a new version of the Chrome
Web browser, 97% of active browser instances are updated to the new version
(in contrast to 85% for Firefox, 53% for Safari and 24% for Opera). This can
be explained by the fact that Chrome employs a silent update mechanism, which
patches vulnerabilities automatically, without user interaction, and which cannot
be disabled by the user. These results cover only instances of the application
that were active at the time of the analysis. In contrast, we study multiple
applications, including 500 different versions of Chrome, and we analyze data
collected over a period of 5 years from 8.4 million hosts, covering applications that
are installed but seldom used. Our findings are significantly different; for example,
447 days are needed to patch 95% of Chrome’s vulnerable host population.

Despite these improvements in software updating, many vulnerabilities remain
unpatched for long periods of time. Frei et al. [53] showed that 50% of Windows
users were exposed to 297 vulnerabilities in a year and that a typical Windows
user must manage 14 update mechanisms (one for the operating system and
13 for the other software installed) to keep the host fully patched. Bilge et
al. [17] analyzed the data in WINE to identify zero-day attacks that exploited
vulnerabilities disclosed between 2008–2011, and observed that 58% of the anti-
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virus signatures detecting these exploits were still active in 2012.

3.8 Discussion

Recent empirical measurements suggest that only 15% of the known vulnerabil-
ities are exploited in real-world attacks and that this ratio is decreasing [144].
Our findings in this paper provide insight into the continued effectiveness of vul-
nerability exploits reported in prior work [123]. For example, when exploits are
released is at most 14%, which suggests that vulnerability exploits work quite
well when they are released—even if they are not zero-day exploits. Additionally,
because vulnerabilities have a non-linear lifecycle, where the vulnerable code may
exist in multiple instances on a host or may be re-introduced by the installation of
a different application, releasing and deploying the vulnerability patch does not
always provide immunity to exploits. In the remainder of this section, we sug-
gest several improvements to software updating mechanisms, to risk assessment
frameworks, and to vulnerability databases, in order to address these problems.

Handling inactive applications. Inactive applications represent a significant
threat if an attacker is able to invoke (or convince the user to invoke) installed,
but forgotten, programs that remain vulnerable. In Section 3.3.1 we present two
attacks against such inactive versions, and we find that it is common for users
to have multiple installations of an application (for example, 50% of the hosts
in our study have Adobe Flash installed both as a browser plugin and as part
of the Adobe Air runtime). We therefore recommend the developers of software
updating systems to check the hard drive for all the installed versions and to
implement the updater as a background service, which runs independently of the
application and which automatically downloads and updates all the vulnerable
software detected.

Consolidating patch mechanisms. We find that, when vendors use multiple
patch dissemination mechanisms for common vulnerabilities (e.g., for Acrobat
Reader and Flash Player), some applications may remain vulnerable after the
user believes she has installed the patch. This highlights a bigger problem with
code shared among multiple applications. Many applications include third-party
software components—both commercial and open source—and they disseminate
security patches for these components independently of each other. In this model,
even if the developer notifies the application vendor of the vulnerability and pro-
vides the patch, the vendors must integrate these patches in their development
and testing cycle, often resulting in delays. For example, vulnerabilities in the
Android kernel and device drivers have a median time-to-patch of 30–40 weeks, as
the mobile device manufacturers are responsible for delivering the patches to the
end-users [145]. Unpatched code clones are also common in OS code deployed in
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the field [146]. Our measurements suggest that, when a vulnerability affects sev-
eral applications, the patches are usually released at different times—even when
the two applications are developed by the same organization—and that the time
between patch releases gives enough window for attackers to take advantage of
patch-based exploit generation techniques. In consequence, we recommend that
patch dissemination mechanisms be consolidated, with all software vendors us-
ing one or a few shared channels. However, in ecosystems without a centralized
software delivery mechanism, e.g., workstations and embedded devices, consoli-
dation may be more difficult to achieve. Moreover, coordinating patch releases
among multiple vendors raises an interesting ethical question: when one vendor
is not ready to release the patch because of insufficient test coverage, is it better
to delay the release (in order to prevent patch-based exploit generation) or to
release the patch independently (in order to stop other exploits)?

Updates for libraries. A more radical approach would be to make library
maintainers responsible for disseminating security patches for their own code,
independently of the applications that import these libraries. This would prevent
patching delays, but it would introduce the risk of breaking the application’s
dependencies if the library is not adequately tested with all the libraries that
use it. This risk could be minimized by recording the behavior of the patch in
different user environments and making deployment decisions accordingly [147].
These challenges emphasize the need for further research on software updating
mechanisms.

Program versioning. We observe that identifying all vulnerabilities affecting a
host is challenging due to the various vendor approaches for maintaining program
and file versions. We conclude that software vendors should have at least one
filename in a product whose file version is updated for each program version.
Otherwise, it becomes very complicated for a user or analyst to identify the
installed program version. This situation happens with popular programs such
as Internet Explorer and in some versions of other programs like Adobe Reader.
This situation also creates issues for the vendor, e.g., when clicking the “About”
menu entry in Reader 9.4.4 it would still claim it was an earlier version. So,
even if it is possible to patch a vulnerability by modifying only a secondary file,
we believe vendors should still update the main executable or library to reflect
a program version upgrade. This would also establish a total ordering of how
incremental patches should be applied, simplifying the tracking of dependencies.

3.8.1 Improving Security Risk Assessment

This work contributes new vulnerability metrics that can complement the Com-
mon Vulnerability Scoring System (CVSS), currently the main risk assessment
metric for software vulnerabilities [148]. The CVSS score captures exploitability
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and impact of a vulnerability, but it does not address the vulnerable popula-
tion size, the patching delay for the vulnerability, the patching rate, and the
updating mechanisms of the vulnerable program. Enhancing CVSS with the
above information would provide stronger risk assessment, enabling system ad-
ministrators to implement policies such as subjecting hosts patched infrequently
to higher scrutiny, prioritizing patching of vulnerabilities with larger vulnerable
populations, or scanning more frequently for vulnerabilities as the updating rate
decreases. These metrics have several potential applications:

• Customizing security: Security vendors could customize the configuration
of their security tools according to the risk profile of a user. For example,
they could enable more expensive, but also more accurate, components of
their product for users at higher risk.

• Improving software whitelists: One issue when using software whitelists for
malware protection [149] is that newly developed benign software would
be considered malicious since it is not yet known to the static whitelist.
Our software developer profiles can reduce false positives by not flagging as
malicious new executables from developers that have not been externally
obtained (e.g., from the Internet, USB, or optical disk).

• Educating the users: Many users may be interested in receiving feedback
about their current security risk profile and suggestions to improve it.

• Cyber-insurance: The new vulnerability metrics and risk profiles could sig-
nificantly improve the risk assessment methods adopted by insurance com-
panies that currently rely on questionnaires to understand how specific se-
curity measures are taken by a given organization or individual to establish
their policy cost.

3.9 Clean NVD

An important challenge to the automatic generation of vulnerability reports are
NVD inaccuracies. We have spent significant effort on a Clean NVD subproject,
whose goal is identifying and reporting discrepancies in NVD vulnerability entries.
This section briefly introduces our efforts. We have contacted the NVD managers
about these issues and have set up a website to detail our findings and help track
fixes to NVD at http://clean-nvd.com/.

The 3 main NVD inaccuracies we found are programs with vulnerable prod-
uct lines rather than program versions, and missing and extraneous vulnerable
versions. Surprisingly, we found that vulnerabilities in popular programs such
as Microsoft Word and Internet Explorer only contain vulnerable program lines.
For example, NVD states that CVE-2009-3135 affects Word 2002 and 2003, but
those are product lines rather than program versions. Note that these programs
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do not have program versions proper, i.e., there is no such thing as Word 2003.1
and Word 2003.2. Instead, Microsoft issues patches to those programs that only
update file versions. Currently, an analyst/user cannot use the NVD data to
determine if the Word version installed on a host is vulnerable. We believe that
NVD should add the specific file versions (for a version-specific filename such
as msword.exe) that patched the vulnerability. To validate that this is possible,
we crawled the Word security advisories in MSDN for 2008-2012, which contain
the CVEs fixed and link to pages describing the specific msword.exe file versions
released with the advisory. We have used that information to build the Word
version mapping and cluster files needed for the analysis.

A vulnerability in NVD may miss some vulnerable program versions. These
are likely due to errors when manually entering the data into the database as the
missing versions typically appear in the textual vulnerability descriptions and
the vendor’s advisories. A vulnerability may also contain extraneous vulnerable
versions. We find two reasons for these: errors when inserting the data and ven-
dors conservatively deciding which program versions are vulnerable. Specifically,
vendors seem to often determine the last vulnerable version in a product line and
then simply consider all prior versions in the line vulnerable, without actually
testing if they are indeed vulnerable. This cuts vulnerability testing expenses
and helps pushing users to the latest version.
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Finding errors. To automatically identify missing and extraneous vulnerable
versions in NVD we use two approaches. For Firefox and Thunderbird, we have
built scripts that collect Mozilla security advisories, parse them to extract the
patched versions in each line, and compare them with the last vulnerable versions
in NVD. In addition, we have developed a generic differential testing approach to
compare the vulnerable ranges in the textual vulnerability description with the
vulnerable versions in the NVD XML dumps. To automate this process we use
natural language processing (NLP) techniques to extract the vulnerable ranges
from the textual description. We have applied the differential testing approach to
the 10 programs finding 608 vulnerabilities with discrepancies, which we exclude
from the analysis. While these approaches are automated and identify a large
number of NVD errors, they may not find all errors. Thus, we also manually check
one vulnerability in each remaining cluster comparing the version list against
the vendor’s advisories and the disclosure dates against the release dates of the
patched versions.

3.10 Conclusion

We investigate the patch deployment process for 1,593 vulnerabilities from 10
client-side applications. We analyze field data collected on 8.4 million hosts over
an observation period of 5 years, made available through the WINE platform from
Symantec. We show two attacks made possible by the fact that multiple versions
of the same program may be installed on the system or that the same library
may be distributed with different software. We find that the median fraction of
vulnerable hosts patched when exploits are released is at most 14%. For most
vulnerabilities, patching starts around the disclosure date, but the patch mech-
anism has an important impact on the rate of patch deployment. For example,
applications updated automatically have a median time-to-patch 1.5 times lower
than applications that require the user to apply patches manually. However, only
28% of the patches in our study reach 95% of the vulnerable hosts during our
observation period. This suggests that there are additional factors that influence
the patch deployment process. In particular, users have an important impact on
the patch deployment process, as security analysts and software developers de-
ploy patches faster than the general user population. Most of the vulnerable hosts
remain exposed when exploits are released in the wild. Our findings will enable
system administrators and security analysts to assess the the risks associated with
vulnerabilities by taking into account the milestones in the vulnerability lifetime,
such as the patching delay and the median time-to-patch.
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Figure 3.7: Vulnerability survival (1 = all hosts vulnerable) at exploitation time.
Data points are annotated with estimations of the exploitation lag: the number of
days after disclosure when the the exploits were publicized (for EDB) and when
the first detections occurred (for WINE-AV).
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Figure 3.9: Patching of one vulnerability from the Flash library, in the stand-
alone installation and in Adobe Reader.
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milestones. Each bar corresponds to a 50-day window.
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4
The Malicia Dataset: Identification and
Analysis of Drive-by Dowload Operations

4.1 Preamble

This chapter reproduces the content of two papers: ”Driving in the Cloud: An
Analysis of Drive-by Download Operations and Abuse Reporting“ published at
DIMVA 2013 and ”The Malicia Dataset: Identification and Analysis of Drive-
by Download Operations“. The papers present a study of the Drive-by Download
ecosystem with a focus on exploit servers. Both papers have been realized with
the contribution of other people from the IMDEA Software institute, in both
works Antonio Nappa has been the leading author.

4.2 Introduction

Drive-by downloads have become the preferred distribution vector for many mal-
ware families [56, 28]. A major contributing factor has been the proliferation of
specialized underground services such as exploit kits and exploitation-as-a-service
that make it easy for miscreants to build their own drive-by distribution infras-
tructure [28]. In this ecosystem many organizations license the same exploit kit,
essentially running the same software in their exploit servers (upgrades are free
for the duration of the license and promptly applied). This makes it challenging
to identify which drive-by operation a exploit server belongs to. This is funda-
mental for understanding how many servers an operation uses, which operations
are more prevalent, how long operations last, and for prioritizing takedown efforts
and law enforcement investigations.

A drive-by operation is a group of exploit servers managed by the same orga-
nization, and used to distribute malware families the organization monetizes. An
operation may distribute multiple malware families, e.g., for different monetiza-
tion schemes. A malware family may also be distributed by different operations.
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For example, malware kits such as zbot or spyeye are distributed by many organi-
zations building their own botnets. And, pay-per-install (PPI) affiliate programs
give each affiliate organization a customized version of the same malware to dis-
tribute [73].

In this paper, we propose a technique to identify exploit servers managed by
the same organization, even when those exploit servers may be running the same
software (i.e., exploit kit). Our technique enables reducing the large number of
individual exploit servers discovered daily, to a smaller, more manageable, number
of operations. Our intuition is that servers managed by the same organization
are likely to share parts of their configuration. Thus, when we find two servers
sharing configuration (e.g., pointed by the same domain, using similar URLs, or
distributing the same malware) this is a strong indication of both being managed
by the same organization. To collect the configuration information we track
exploit servers over time and classify the malware they distribute.

Our clustering can be used by law enforcement during the pre-warrant (plain
view) phase of a criminal investigation [150]. During this phase, criminal activity
is monitored and targets of importance are selected among suspects. The goal of
the plain view phase is gathering enough evidence to obtain a magistrate-issued
warrant for the ISPs and hosting providers for the servers in the operation.

Our clustering can identify large operations that use multiple servers, rank
operations by importance, and help understanding whether they belong to indi-
vidual owners or to distribution services.

Results. Our data collection has been running for one year and has tracked
502 exploit servers. Our analysis reveals two types of drive-by operations. Two
thirds of the operations use a single server and are short-lived. The other third of
the operations use multiple servers to increase their lifetime. These multi-server
operations have a median lifetime of 5.5 days and some live for several months,
despite individual exploit servers living a median of 16 hours. Miscreants are able
to run long-lived operations by relying on pools of exploit servers, replacing dead
servers with clones. We also observe a few short-lived multi-server operations
(lasting less than a day) that use over a dozen exploit servers in parallel to
achieve a burst of installations. While most short-lived operations distribute a
single malware family, we observe multi-server operations often distributing more
than one. Furthermore, we identify two PPI affiliate programs (the winwebsec
fake antivirus and the zeroaccess botnet) that manage exploit servers so that their
affiliates can convert their traffic into installations, without investing in their own
drive-by infrastructure.

We also analyze the hosting infrastructure. We find that to sustain long-lived
multi-server operations, in the presence of increasing pressure from defenders,
miscreants are turning to the cloud. Over 60% of the exploit servers belong to
cloud hosting services. Long-lived operations are using pools of exploit servers,
distributed among different countries and autonomous systems (ASes) for re-
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siliency, replacing dead servers with clones. Miscreants are taking advantage of
a booming cloud hosting services market where hosting is cheap, i.e., virtual pri-
vate servers (VPS) start at $10 per month and dedicated servers at $60 [151].
These services are easy to contract (e.g., automated sign-up procedures requiring
only a valid credit card) and short leases are available (e.g., daily billing) so that
the investment loss if the exploit server is taken down can be less than a dollar.
In this environment, cloud hosting providers have started reporting that 50% of
their automated VPS subscriptions are being abused [152].

In addition, we analyze the exploits used by the monitored exploit servers.
In particular, we measure the exploit polymorphism, which as far as we know
has not previously been studied. Our results show that different exploit types
(e.g., Java, PDF, Windows fonts) exhibit different repacking rates. For example,
some exploit kits like BlackHole 2 have integrated automated repacking of PDF
exploits for each exploitation attempt. On the opposite side, font exploits are
not being repacked likely due to the lack of repacking tools. Exploits for Java
vulnerabilities are repacked at a lower and varying frequency indicating that the
repacking tool is likely invoked manually and not fully integrated in the exploit
kit.

To understand how difficult is to take down exploit servers, we issue abuse
reports for 19 long-lived servers. We analyze the abuse reporting process, as well
as the interaction with the ISPs and hosting providers. We use our infrastructure
to monitor the result of the report (i.e., whether the server is taken down). The
results are disheartening. Over 61% of the reports do not produce a reply and
the average life of a exploit server after it is reported is 4.3 days.

Our work reveals a growing problem for the take down of drive-by download
operations. While miscreants enjoy a booming hosting market that enables them
to set up new exploit servers quickly, defenders face a tough time reporting abuse
due to uncooperative providers and inadequate business procedures. Takedown
procedures need to be rethought. There is a need to raise the cost for miscreants
of a server being taken down, monitor short-lived VPS subscriptions, and shift
the focus to prosecuting the organizations that run the operations, as well as the
organizations behind specialized underground services supporting the ecosystem.

Finally, this work has produced a dataset that includes the malware binaries
we collected, the metadata of when and how it was collected, and the malware
classification results. To foster further research we make our Malicia dataset
available to other researchers [153].

Contributions:

• We propose a technique to identify drive-by operations by grouping exploit
servers based on their configuration and the malware they distribute.

• We report on aspects of drive-by operations such as the number of servers
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Figure 4.1: Exploit kit ecosystem.

they use, their hosting infrastructure, their lifetime, and the malware fam-
ilies they distribute.

• We measure the polymorphism of the exploits served by the monitored
exploit servers.

• We analyze the abuse reporting procedure by sending reports on exploit
servers.

• We build a dataset with the collected malware, their classification, and
associated metadata. We make this dataset available to other researchers.

4.3 Overview

Drive-by downloads are a popular malware distribution vector. To distribute its
products over drive-by downloads a malware owner needs 3 items: exploitation
software, servers, and traffic. To facilitate the process, 3 specialized services exist
(Figure 4.1). A malware owner can license an exploit kit (host-it-yourself), rent a
exploit server with the exploit kit installed (exploitation-as-a-service), or simply
buy installs from a pay-per-install service that provides the exploit server and the
traffic.

4.3.1 Roles

The exploit kit ecosystem has four main roles: malware owner, exploit kit devel-
oper, exploit server owner, and exploit server manager. Exploit kit developers
offer a software kit including a set of exploits for different platforms (i.e., com-
bination of browser, browser plugins, and OS), web pages to exploit visitors and
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drop files on their hosts, a database to store all information, and an adminis-
tration panel to configure the functionality and provide installation statistics.
Exploit kits are offered through two licensing models: host-it-yourself (HIY) and
exploitation-as-a-service (EaaS). In both models access to the exploit kit (or
server) is time-limited and clients obtain free software updates during this time.
Also in both models the client provides the traffic as well as a domain name
to which the kit is linked. The client pays for domain changes (e.g., $20 for
BlackHole [154]) unless it buys a more expensive multi-domain license.

The exploit server provider is the entity that contracts the hosting and Internet
connectivity for the exploit server. It can be the malware owner in the HIY model
or the exploit kit developer in EaaS. Exploit kits are designed to be installed on a
single host that contains the exploits, malware files, configuration, and statistics.
Thus, exploit servers are typically dedicated, rather than compromised, hosts. A
robust hosting infrastructure is needed to launch long-lived operations as most
exploit servers are short-lived. Exploit server providers acquire a pool of servers
and favor hosting providers and ISPs where exploit servers live longer, i.e., those
that are not diligent in handling abuse reports, or those who offer a specific abuse
protection policy.

The exploit server manager is the entity that manages the exploit server
through its administration panel. The manager is a client of the exploit kit
developer and corresponds to the malware owner or a PPI service. PPI affiliate
programs may run their own exploit server providing each affiliate with a unique
affiliate URL. Affiliates credit installs by installing their affiliate-specific malware
executable in hosts they have compromised, or by sending traffic to their affiliate
URL, which would in turn install their affiliate-specific malware if exploitation
succeeds. In these programs, affiliates can point their traffic sources to their affili-
ate URL in the program’s exploit server or to their own exploit server. The latter
requires investment but has two advantages: they can configure their exploit
server to install other malware on the compromised machine, and they can avoid
the affiliate program skimming part of their traffic for their own purposes. Our
operation analysis reveals both exploit servers managed by individual affiliates
and by PPI affiliate programs.

4.3.2 Exploit Server Clustering

In this work we cluster exploit servers under the same management using infor-
mation about the server’s configuration. Two servers sharing configuration, (e.g.,
pointed by the same domain, hosting similar URLs, using the same exploits, or
distributing the same malware) indicates that they may be managed by the same
organization. We focus on server configuration because the software is identical
in many exploit servers since kit updates are free and promptly applied (19 days
after the launch of BlackHole 2.0 we could no longer find any live BlackHole 1.x
servers).
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Figure 4.2: Architecture of our milking, classification, and analysis.

Our results show that attackers are using pools of exploit servers to sustain
malware distribution operations over time. Such operations often run multiple
exploit servers simultaneously behind a Traffic Direction System (TDS) that dis-
tributes the incoming traffic among them [155]. When one of their exploit servers
goes down, attackers replace it with another server from their pool. The intuition
behind our clustering is that in this environment new exploit servers often reuse
the configuration of older servers. This happens because, when installing a new
exploit server, the attacker simply clones an existing server including its config-
uration, e.g., by uploading to a new cloud hosting provider a previously created
virtual machine image file where an exploit server is installed and configured.

4.4 Methodology

To collect the information needed to cluster servers into operations, we have
built an infrastructure to track individual exploit servers over time, periodically
collecting and classifying the malware they distribute. Our pipeline is described
in Figure 4.2. We receive feeds of drive-by download URLs (Section 4.4.1), use
honeyclients as well as specialized milkers to periodically collect the malware
from the exploit servers those URLs direct to (Section 4.4.2), classify malware
using icon information and behavioral reports obtained through execution in a
contained environment (Section 4.4.3), store all information in a database, and use
the collection and classification data for clustering exploit servers into operations
(Section 4.5) and for abuse reporting (Section 4.6). An earlier version of the
milking and classification components were used to collect the BlackHole/Phoenix
feed in [28]. Since that work, we have upgraded those two components. This
section describes their latest architecture, detailing the differences with [28].

4.4.1 Feeds

To identify exploit servers for the first time, we use two publicly available feeds:
Malware Domain List (MDL) [156] and urlQuery [157]. MDL provides a public
forum where contributors report and discuss malicious URLs. The reported URLs
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are manually checked by volunteers. Once verified they are published through
their webpage and feeds. urlQuery is an automatic service that receives URLs
submitted by analysts and publishes the results of visiting those URLs on their
webpage. We periodically scan the webpages of MDL and urlQuery for URLs
matching our own regular expressions for the landing URLs of common exploit
kits. The volume of URLs in urlQuery is much larger than in MDL, but the
probability of finding a live exploit server is larger in MDL because URLs in url-
Query are not verified to be malicious and URLs long dead are often re-reported.
We selected these feeds based on their public availability but the infrastructure
is designed to work with any URL feed.

4.4.2 Milking

Our milking component differs from the one used to collect the BlackHole/Phoenix
feed in [28] in that it identifies an exploit server by its landing IP, i.e., the IP ad-
dress hosting the landing URL, which provides the functionality (typically some
obfuscated JavaScript code) to select the appropriate exploits for the victim’s
platform. In [28] we identified exploit servers by the domain in their URLs. This
was problematic because a large number of domains often resolve to the IP ad-
dress of an exploit server. When the domains in the URLs known to us went
down, our milking would consider the exploit server dead, even if it could still be
reachable through other domains. Currently, if all domains in the landing URLs
of a server stop resolving, the milking queries two passive DNS services [158, 159]
for alternative domains recently observed resolving to the exploit server. If no
alternative domain is found, the milking continues using the landing IP.

In addition, our infrastructure now resolves the malicious domains period-
ically, which enables locating previously unknown exploit servers if the same
domain is used to direct traffic to different exploit servers over time. This infor-
mation is used in our clustering (Section 4.5). Using this separate resolution we
discover an additional 69 servers not present in our feeds and another 30 servers
before they appear in the feeds.

Another difference is that in [28] we relied exclusively on lightweight specialized
milkers, i.e., custom HTTP clients that collect the malware from the exploit
server, without running a browser or going through the exploitation process,
simply by replaying a minimized network dialog of a successful exploitation. Our
specialized milkers take advantage of the lack of replay protection in the BlackHole
1.x and Phoenix exploit kits. For details on the construction of the specialized
milkers, we refer the interested reader to our technical report [160]. Since then
we have added support for milking other exploit kits by adding honeyclients, i.e.,
Windows virtual machines installed with an unpatched browser (and browser
plugins), which can be navigated to a given landing URL [54, 55].
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Milking policy. Our milking tries to download malware from each known ex-
ploit server every hour on average. If no malware is collected, it increments a
failure counter for the exploit server. If a failure counter reaches a threshold of
6, the state of its exploit server is changed to offline. If malware is collected be-
fore 6 hours, its failure counter is reset. This allows milking to continue through
temporary failures of the exploit server. In addition, the milking component runs
a separate process that checks if an offline exploit server has resurrected every 2
days. If three consecutive resurrection checks fail, the exploit server is considered
dead. If the server has resurrected, its failure and resurrection counters are reset.

4.4.3 Malware Classification

Our classification process leverages icon information extracted statically from
the binary as well as network traffic and screenshots obtained by executing the
malware in a contained environment. Compared to the classification process
in [28], we propose the automated clustering of malware icons and screenshots
using perceptual hashing and have implemented a novel malware clustering and
signature generation tool [40]. In addition, we evaluate the accuracy of the icon
and screenshot clustering using a manually generated ground truth.

Additional behavioral features could be used for malware classification such
as the system and API calls invoked by the malware during execution [68, 70].
We have not yet added those due to resource constraints. Their addition would
likely increase our malware classification results. However, our current classifica-
tion only leaves 2% of the malware samples unclassified, so the benefit would be
limited.

Malware execution. We execute each binary in a virtualized environment
designed to capture the network traffic the malware produces, and to take a
screenshot of the guest VM at the end of the execution. We use Windows XP
Service Pack 3 as the guest OS and only allow DNS traffic and HTTP connections
to predefined benign sites to leave our contained environment. All other traffic
is redirected to internal sinks.

Our classification applies automatic clustering techniques separately to the
icons, the screenshots, and the network traffic. Then, an analyst manually refines
the generic labels by comparing cluster behaviors against public reports. Finally,
majority voting on the icon, screenshot, and network labels decides the family
label for an executable.

Icons. A Windows executable can embed an icon in its header. Many malware
families use icons because it makes them look benign and helps them establish a
brand, which is important for some malware classes such as rogue software. Icons
can be extracted statically from the binary without running the executable, so
feature extraction is very efficient. A naive icon feature would simply compute
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(a) winwebsec         (b) securityshield               (c) zbot  

Figure 4.3: Icon polymorphism. Each pair of icons comes from two different
files of the same family and is perceptually the same, although each icon has a
different hash.

Feature Th. Clus. Precision Recall Time
I avgHash 3 141 99.7% 91.3% 2.4s
I pHash 13 149 99.8% 89.6% 1m17s

S avgHash 1 64 99.2% 60.4% 7m37s
S pHash 13 43 97.9% 52.4% 16m8s

Table 4.1: Clustering results for icons (top) and screenshots (bottom).

the hash of the icon. However, some malware families use polymorphism to ob-
fuscate the icons in their executables, so that two malware of the same family
have icons that look the same to the viewer, but have different hashes (Fig-
ure 4.3). To capture such polymorphic icon variants we use a perceptual hash
function [161]. Perceptual hash functions are designed to produce similar hashes
for images that are perceptually (i.e., visually) similar. A good perceptual hash
returns similar hashes for two images if one is a version of the other that has
suffered transformations such as scaling, aspect ratio changes, or small changes
in brightness, contrast, and color. We have experimented with two different per-
ceptual hash functions: average hash (avgHash) [39] and pHash [161]. We use
the Hamming distance between hashes as our distance metric. If the distance
is less than a threshold both icons are clustered together using the aggressive
algorithm in Section 4.5.2. We experimentally select the threshold value for each
feature. Table 4.1 (top) shows the clustering results on 5,777 icons compared with
the manually generated ground truth, which an analyst produces by examining
the clusters. The results show very good precision for both features and slightly
better recall and runtime for avgHash.

Screenshots. The screenshot clustering also uses perceptual hashing. Table 4.1
(bottom) shows the clustering results on 9,896 screenshots. This time avgHash
achieves better precision but slightly worse recall. The lower recall compared
to the icons is due to the perceptual hashing distinguishing error windows that
include different text or the icon of the executable. Still, the clustering reduces
9,896 screenshots to 50–60 clusters with very high precision, so it becomes easy
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for an analyst to manually label the clusters. We ignore clusters that capture
generic error windows or do not provide family information, e.g., the Windows
firewall prompting the user to allow some unspecified traffic.

Network traffic. Our network clustering has evolved over time. In our ear-
lier works [28, 44] the features used by the network clustering were the C&C
domains contacted by the malware and tokens extracted from the URLs and
User-Agent headers in HTTP requests sent by the malware. Those features did
not handle malware using non-HTTP traffic for C&C communication. To support
non-HTTP C&C traffic we developed a novel malware clustering and signature
generation tool called FIRMA [40].

FIRMA takes as input a set of network traces obtained by running unlabeled
malware binaries in a contained environment. It outputs: (1) a clusters file with
a partition of the malware binaries that produced the network traces into family
clusters, (2) a signature file with network signatures annotated with the family
cluster they correspond to, and (3) an endpoints file with the C&C domains and
IP addresses that the malware binaries in each family cluster contacted across
the input network traces.

The network signatures produced by FIRMA enable classifying new executa-
bles from previously seen malware families efficiently, without having to rerun the
clustering. More importantly, they can be used to identify malware-infected com-
puters in network monitored by an IDS. FIRMA produces network signatures in
the format supported by the open source signature-matching IDSes Snort [34] and
Suricata [162], so that those popular IDSes can be used to match the signatures
on network traffic.

In addition to not being limited to any type of traffic (e.g., HTTP) or specific
fields (e.g., HTTP URL, User-Agent), other salient characteristics of FIRMA are
that it produces a set of network signatures for each malware family (i.e., family
cluster) and that the signature generation is protocol-aware. A set of signatures
is produced for each family cluster so that each signature captures a different
network behavior of the family, e.g., one signature for HTTP traffic and another
for a binary C&C protocol or different signatures for different protocol messages.
Using a protocol-aware traffic clustering and signature generation means that if
the C&C traffic uses a known application protocol such as HTTP, IRC, or SMTP,
the traffic is parsed into fields and the signatures capture that a token may be
specific to a field and should only be matched on that field, increasing signature
accuracy.

It is important to note that FIRMA supports obfuscated C&C protocols,
commonly used by malware. In fact, much of the malware in our datasets uses
such obfuscation. It is still possible to generate signatures on those because ob-
fuscated C&C protocols often contain value invariants. For fully polymorphic
C&C protocols [163], i.e., protocols where every single byte changes in each re-
quest making it impossible to generate a signature on the ciphertext, FIRMA
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can still cluster malware samples from the same family if they reuse the same
C&C domains or IP addresses. We refer the reader to the FIRMA paper for
more details [40].

Once FIRMA outputs the family clusters, an analyst tries to map the au-
tomatically generated cluster labels (e.g., CLUSTER:A) to well-known traffic
families (e.g., zbot). Overall, our classification produces traffic labels for 80%
executables, icon labels for 51%, and screenshot labels for 21%. It classifies 93%
of the executables, 5% fail to execute, and 2% remain unclassified.

4.4.4 Exploit Analysis

An exploit is an input to a program that takes advantage of a software vul-
nerability, which affects some versions of the program, to cause an unintended
behavior of the program. An exploit is able to drive the program execution to the
vulnerability point where the vulnerability can be triggered (e.g., an arithmetic
operation) and to trigger the vulnerability condition (e.g., make the arithmetic
operation overflow).

Similar to malware, exploits can also exhibit polymorphism. That is, the same
exploit can be repacked multiple times to generate different exploit instances, i.e.,
variants of the same exploit. For example, a PDF exploit, in addition to the data
that leads the program to the vulnerability point and triggers the vulnerability
condition, may also contain much other data that can be modified to generate
a different PDF file that still exploits the same vulnerability in the same way.
In this example, we say that the old and new PDF files are two instances of the
same exploit.

Exploit polymorphism can be introduced by exploit kit developers to bypass
exploit signatures used by AV vendors. It also happens when the payload of the
exploit (e.g., the code run after exploitation and the data used by that code)
needs to be updated, without affecting how the vulnerability is exploited. For
example, an exploit may embed URLs from where some malware is downloaded
after exploitation. Those URLs may need to be changed periodically to bypass
URL blacklists. Every time they are changed, a new exploit instance is created.

In this section we perform what we believe is the first analysis of how exploit
polymorphism works in prevalent exploit kits. In particular, we examine how
often different exploit types (e.g., Java, PDF, Windows fonts) are repacked to
introduce polymorphism.

Exploit collection. To analyze the exploits used in the drive-by downloads
we leverage that (starting on November 19, 2012) every time a honeyclient visits
a potentially malicious URL, a trace of the complete network communication is
stored. This produces 14,505 network traces, of which 19.7% correspond to ex-
ploitation attempts. The rest correspond to landing URLs that no longer lead
to an exploit server, or exploit servers temporarily down. Of those exploitation
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attempts 74.5% (14.7% of all network traces) lead to malware installation. The
unsuccessful exploitation attempts may be due to unreliable exploits and, rarely,
to the honeyclient execution finishing before malware was downloaded. The col-
lected exploits come from the BlackHole 2.x (BH2) and CoolExploit exploit kits.
For other exploit kits for which we use milkers, e.g., Phoenix and BlackHole 1.x,
no network traces are generated.

The network traces contain multiple instances of the exploits that the ex-
ploit servers use against our honeyclients. Extracting and classifying all exploit
instances in a network trace is challenging. We focus on exploits that are individ-
ual files, namely Java JAR archives, PDF documents, and EOT font files. There
may be other types of exploits embedded in the landing page, e.g., JavaScript
exploits. We do not attempt to identify and classify those because the landing
page is obfuscated and while it could be deobfuscated, understanding what parts
of it correspond to an exploit is difficult, as the landing page contains additional
functionality like checking the victim’s software configuration and redirecting the
user after exploitation. We extract a total of 172 unique (by SHA1 hash) exploit
instances: 114 JAR, 55 PDF, and 3 EOT files. The JAR and PDF files target
vulnerabilities in the Java and Adobe Reader browser plugins respectively, and
the EOT files target Windows vulnerabilities.

Exploit kits select which exploits to use from their exploit pool based on the
software configuration of the victim, typically checked by some JavaScript code
in the landing page. Thus, the exploits in our network traces depend on the
configuration of our honeyclients. Our honeyclients have the same configuration:
Windows XP SP3 with IE 7, Java JRE 6u14, and Adobe Reader 8. It is important
to note that our goal is not to analyze all the exploits that a exploit kit contains.
Our approach cannot see exploits that exploit servers do not serve against our
honeyclients. For example, the BlackHole and CoolExploit kits are known to
contain Flash exploits [164]. However, we do not observe Flash exploits in our
network traces, likely because our honeyclients do not have Flash installed, thus
the exploit kits do not serve those exploits. Rather, our goal is to analyze a novel
question: whether exploit kits periodically repack their exploits and if so, how
often.

Exploit classification. To verify that the extracted files are exploits we lever-
age two online services: VirusTotal [25] and Wepawet [165]. We use VirusTotal
for JAR and EOT files and Wepawet for PDF files, as VirusTotal does not support
PDF files. The 3 EOT files and 112/114 JAR files were present in VirusTotal and
flagged by at least one AV vendor to be malicious. We submitted to VirusTotal
the 2 JAR files that they had not seen yet, which were both flagged as malicious.
We submit all 55 PDF documents to Wepawet, which identifies them as exploits.
Thus, all extracted files are indeed exploits, which shows that the file extraction
from the network traces does not identify benign files as exploits.

We classify the exploits according to the vulnerability they target. We first
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Type CVE Instances Collected Ratio

JAR CVE-2012-0507 88 2,419 3.5%
CVE-2012-1723 15 203 7.4%
CVE-2010-4476 3 103 2.9%

Unknown 8 158 5.0%
Subtotal 114 2,894 3.9%

EOT CVE-2011-3402 3 777 0.3%

PDF CVE-2009-0927 43 47 91.4%
CVE-2010-0188 12 12 100%

Subtotal 55 69 93.2%

Total 172 3,740 4.6%

Table 4.2: Exploit classification.

submit the exploit files to VirusTotal, which scans them using a variety of AV
products and publishes the AV detection labels. We leverage the fact that some
AV vendors include the CVE identifier of the vulnerability in their labels. For
each AV that detects the file as malicious we check if a CVE identifier is included
in the detection label using the following regular expression: CVE[- ]?([0-9]{4})[-
]+([0-9]{4}). Different AV vendors may not agree on the vulnerability targeted

by the exploit.To address this issue, we use majority voting to select the most
commonly seen CVE identifier for a exploit file. In case of a tie, we choose the
most frequent CVE identifier between the tied ones, where frequency is computed
across all exploits that present no tie. For the PDF files Wepawet outputs a single
CVE for each exploit, so majority voting is not needed.

Using AV labels for classification is not ideal as it is well known that AV ven-
dors focus on detection and their classification is often inaccurate [68]. Indeed,
we found two exploit instances where AV vendors disagreed on the targeted vul-
nerability, and the majority voting was wrong. In this case it was possible to spot
the error because the vulnerabilities output by the majority voting did not affect
the Java versions run by our honeyclients. These examples illustrate the need for
developing accurate exploit classification techniques.

Table 4.2 presents the exploit classification results. For each exploit type,
it shows the CVE identifier of the different vulnerabilities or Unknown if no
CVE identifiers were found. For each vulnerability, it presents the number of
unique exploit files labeled with that vulnerability, the total number of times
those instances appear in the network traces, and the ratio of both numbers
as a percentage. The larger the percentage the more likely it is that when we
collect a exploit instance for a vulnerability, we have never seen that instance
before. The results show that Java vulnerabilities are most targeted against our
honeyclients, followed by the CVE-2011-3402 TrueType font parsing vulnerability
in Windows, with PDF exploits comprising only 1.8% of all exploits used against
our honeyclients. The most common Java vulnerability is CVE-2012-0507, which
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is targeted by 65% of the collected exploits. As explained earlier, if we configured
our honeyclients differently, exploit kits may serve them other exploits.

Exploit polymorphism. We analyze whether exploit kits have integrated
packing tools to automatically provide polymorphism for their exploits. For this,
we analyze each exploit file type (JAR, PDF, EOT) separately. For PDF files,
the ratio in Table 4.2 shows that 93.2% of the times that we collect a PDF exploit
instance it is new, i.e., we have not collected it before. This indicates high poly-
morphism as we periodically visit each exploit server until it dies, indicating that
the same server distributes different exploit instances for the same vulnerability
over time. A detailed analysis of PDF exploit distribution reveals 11 Blackhole
2.0 (BH2) servers distributing PDF exploits. Consecutive visits to the same BH2
exploit server, separated by as little as 4 minutes, yield different PDF exploits
for the same vulnerability. In addition, when we collect multiple instances of the
same PDF exploit, all the instances appear in a single network trace (i.e., on
the same drive-by download session). These indicate that automatic repacking
of PDF exploits is likely integrated into the BH2 exploit kit and occurs for every
drive-by download session. This means that byte signatures are unlikely to help
in detecting PDF exploits.

In contrast, the ratio for EOT exploits is very low (0.3%), which indicates
low polymorphism. Detailed analysis of the EOT files shows that of the 3 files
one is served by the CoolExploit kit and the other 2 by different operations that
use BH2. Each exploit instance uses a different URL to download the malware
after exploitation and is never repacked, i.e., BH2 and CoolExploit servers always
distribute the same EOT exploit instance over time. For example, the longest
lived server in our dataset distributes the same EOT exploit for over 2 months.
This likely indicates that there are no repacking tools available for EOT exploits.
Once an EOT exploit is created with an embedded URL, attackers need to ensure
that the URL stays up over long periods of time, e.g., by using bullet-proof
hosting. This produces an easy avenue for detection. We expect that in the near
future repacking tools will become available due to market demand, or that EOT
exploits will be replaced by easier to repack exploit types.

The ratio for JAR exploit instances is 3.9% indicating some polymorphism,
but much lower than PDF exploits. Figure 4.4 shows the CDF of the lifetime
of JAR exploit instances, where the lifetime of an instance is measured as the
difference between the last and first time it was collected. The median lifetime is
14.4 hours, the average is 39.3 hours, and the standard deviation is 121.9 hours
(i.e., 5 days). 69.2% of the exploits have a lifetime less or equal to one day, 19.2%
have a lifetime between one and two days, and the remaining more than2 days.
The high standard deviation in lifetime and the overall low repacking rate indicate
that Java exploits are not automatically repacked by the monitored exploit kits.
They are likely repacked using tools that need to be manually invoked by the
exploit server manager. These tools may be shipped (but not integrated) with
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Figure 4.4: CDF of the lifetime of Java exploits.

the exploit kit or may be commercial-off-the-self (COTS) tools [166, 167].
The fact that EOT exploits are not repacked means that different exploit

servers in the same operation may deliver the same EOT exploit instance. In
addition, since the repacking of Java exploits requires some manual steps, exploit
server managers are likely to copy the newly packed exploit instances across their
exploit servers. We leverage these to incorporate exploit polymorphism as one of
the features used in our exploit server clustering, presented in the next section.

Vulnerabilities exploited over time. Figure 4.5 shows the distribution over
time of the exploits for each vulnerability. Of the 8 vulnerabilities, exploits for 5
of them were collected from the time we started producing network traces with
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Figure 4.5: Exploit distribution of different vulnerabilities over time.

the honeyclients. Exploits for the 3 other vulnerabilities started to be collected
3 months later, which indicates that those vulnerabilities were added later to
the exploit kits. Two of these (CVE-2013-0431 and CVE-2013-0422) are recent
vulnerabilities. This illustrates the benefit of the exploit kit ecosystem where
exploit kit writers focus on developing exploits for new vulnerabilities, and new
exploits for old ones, and customers achieve improved infection rates by adding
those exploits.

4.5 Exploit Server Clustering

To identify exploit servers managed by the same organization we propose an unsu-
pervised clustering approach that groups exploit servers that have similar exploit
kit configurations. The intuition is that exploit servers in the same operation are
more likely to be similarly configured because attackers may reuse parts of the
configuration across their servers. For example, attackers may clone an existing
exploit server to create a new one in a different hosting provider by copying the
image file with the exploit kit configured. Or, they may use a malicious domain
to point to different exploit servers over time. In contrast, exploit servers in
different operations are less likely to be similarly configured.

To cluster the exploit servers we define a distance metric between two exploit
servers based on their configuration. The distance metric combines 7 features
that capture how a exploit server is configured including the domains that point
to the server, the server’s IP address, the URLs it hosts, the exploits it serves,
and the malware it distributes. These features are derived from our milk data.

This section details our 7 similarity features (Section 4.5.1) and the clustering
algorithms we use (Section 4.5.2).

4.5.1 Features

We define 7 boolean server similarity features:
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1. Landing URL feature: The landing URL of a exploit server contains ele-
ments that are specific to the configuration of the exploit kit. In particular,
the file path in the landing URL (the directory where the kit’s files are
installed and the name of those files) and the parameter values (typically
used to differentiate traffic sources) are configurable and changed from the
default by the manager to make it difficult to produce URL signatures for
the kit. This feature first extracts for each landing URL the concatenation
of the file path (including the file name) and the list of parameter values.
The similarity is one if the set intersection is non-empty, otherwise it is
zero.

2. Domain feature: If the same DNS domain has resolved to the IP addresses
of two exploit servers, that is a strong indication that both exploit servers
belong to the same organization, i.e., the one that owns the domain. This
feature first extracts the set of DNS domains that have resolved to the IP
address of each server. The similarity between two servers is one if the set
intersection is non-empty, otherwise the similarity is zero.

3. File hash feature: A malware owner can distribute its malware using its own
infrastructure (HIY or EaaS) or a PPI service. However, it is unlikely that
it will use both of them simultaneously because outsourcing distribution to
a PPI service indicates a willingness to avoid investing in infrastructure.
Thus, if the same malware executable (i.e., same SHA1 hash) is distributed
by two servers, that is a strong indication of both exploit servers belonging
to the same organization. This feature first extracts the set of file hashes
milked from each exploit server. The similarity is one if the set intersection
is non-empty, otherwise it is zero.

4. Icon feature: The icon in a malware executable is selected by the creator of
the executable, i.e., malware owner or an affiliate PPI program (the program
is typically in charge of repacking the affiliate-specific malware [73]). In
both cases a shared icon in files distributed by different servers is a strong
indication of both servers distributing malware from the same owner. This
feature is related to the file hash feature but covers files that may have been
repacked while keeping the same icon. This feature first extracts the set of
icons in files milked from each exploit server. The similarity is one if the
set intersection is larger than 1 otherwise it is zero.

5. Family feature: If two servers distribute the same malware family, and the
malware family is neither a malware kit (e.g., zbot, spyeye) nor an affiliate
program, then the two servers distribute malware of the same owner and
thus share management. This feature is optional for the analyst to use
because it requires a priori knowledge of which malware families are malware
kits or affiliate programs, otherwise it may overcluster. This boolean feature
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first extracts the set of non-kit, non-affiliate malware families distributed by
each exploit server. The similarity is one if the set intersection is non-empty,
otherwise it is zero.

6. Consecutive IP feature: If two exploit servers have consecutive IP addresses
that is a strong indicator that both servers have been contracted by the
same entity because the probability of two separate exploit server owners
selecting the same ISPs and those ISPs selecting consecutive IP addresses
for their servers is very small. The similarity between two servers is one if
their IP addresses are consecutive, otherwise it is zero.

7. Exploit hash feature: Similar to malware, exploits may also be periodically
repacked. Such repacking is either performed on-the-fly by the exploit kit
or manually using a repacking tool. In both cases, if the same exploit (i.e.,
same SHA1 hash) is distributed by two servers, that is a strong indication
of both exploit servers being managed by the same entity. This feature first
extracts the set of exploit hashes collected from each exploit server. The
similarity is one if the set intersection is non-empty, otherwise it is zero.
Note that exploit types that are automatically repacked in each exploita-
tion session, e.g., PDF exploits, will not capture similarity in this feature
since each exploit server serves different PDF exploit instances. In our ex-
periments, this feature captures similarity on the Java and EOT exploits
only. However, with other exploit kits it is unknown a priori whether auto-
matic repacking for a exploit type has been integrated in the kit. Thus, it
is important to include all exploit types when computing this feature.

4.5.2 Clustering Algorithms

We experiment with two clustering algorithms: the partitioning around medoids
(PAM) [168] and an aggressive clustering algorithm that groups any servers with
some similarity.

Partitioning around medoids. The input to the PAM algorithm is a distance
matrix. To compute this matrix we combine the server similarity features into
a boolean server distance metric as d(s1, s2) = 1 − (

∨5
i=1 fi(s1, s2)), where fi is

the server similarity feature i. Note that the features compute similarity (one
is similar), while the distance computes dissimilarity (zero is similar). Once a
distance matrix has been computed, we apply the PAM algorithm. Since PAM
takes as input the number k of clusters to output, the clustering is run with
different k values, selecting the one which maximizes the Dunn index [169], a
measure of clustering quality.

Aggressive clustering. Our aggressive clustering first computes a boolean
server similarity metric: two servers have similarity one if any of the server feature
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similarities is one (logical OR). Then, it iterates on the list of servers and checks
if the current server is similar to any server already in a cluster. If the current
server is only similar to servers in the same cluster, we add the server to that
cluster. If it is similar to servers in multiple clusters, we merge those clusters
and add the current server to the merged cluster. If it is not similar to any
server already in the clusters, we create a new cluster for it. The complexity of
this algorithm is O(n2), but since the number of servers is on the hundreds, the
clustering terminates in a few seconds.

4.6 Reporting

Reporting abuse is an important part of fighting cybercrime, largely overlooked
by the research community. In this section we briefly describe the abuse reporting
process and the challenges an abuse reporter faces. In Section 4.7.5 we detail our
experiences reporting exploit servers and discuss the current situation.

Five entities may be involved in reporting an exploit server: the abuser, the
reporter, the hosed that owns the premises where the exploit server is installed,
the abuser’s ISP that provides Internet access to the exploit server, and national
agencies such as CERTs and law enforcement. Sometimes, the ISP is also the
hoster because it provides both hosting and Internet access to the exploit server.
The abuser can also be the hoster if it runs the exploit server from its own
premises.

The most common practice for reporting exploit servers (and many other
abuses1), is to first email an abuse report to the ISP’s abuse handling team,
who will forward it to their customer (i.e., the hoster) if they do not provide the
hosting themselves. If this step fails (e.g., no abuse contact found, email bounces,
no action taken), the reporter may contact the CERT for the country where the
exploit server is hosted or local law enforcement. There are two main reasons
to notify first the abuser’s ISP. First, in most cases a reporter does not know
the abuser’s or hoster’s identity. But, the abuser’s ISP is the entity that has
been delegated the IP address of the exploit server, which can be found in the
WHOIS databases [170]. Second, ISPs that are provided evidence of an abuse of
their terms of service (ToS) or acceptable use policy (AUP) by a host unlikely
to have been compromised (e.g., an exploit server), can take down the abusing
server without opening themselves to litigation. This removes the need for law
enforcement involvement, speeding the process of stopping the abuse.

Next, we describe 3 challenges a reporter faces when sending abuse reports.

1This practice also applies to other types of abuse such as C&C servers, hosts launching SSH
and DoS attacks, and malware-infected machines. However, spam is commonly reported from a
receiving mail provider to the sender mail provider and web server compromises are commonly
first reported to the webmaster.
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Abuse report format and content. The Messaging Abuse Reporting Format
(MARF) [171, 172, 173] defines the format and content for spam abuse reports.
Unfortunately, it does not cover other types of abuse and proposals for extending
it (e.g., X-ARF [174]) are still work-in-progress. In this work we use our own email
template for reporting exploit servers. The key question is what information will
convince an ISP of the abuse. The goal is to provide sufficient evidence to convince
the ISP to start its own verification. The key evidence we include is a network
trace of a honeyclient being exploited by the exploit server. We also include the
IP address of the server, the first day we milked it, and pointers to public feeds
listing the server.

Abuse contact address. Finding the correct abuse contact is not always easy
(or possible). For spam, RFC 6650 states that abuse reports should only be sent to
email addresses clearly intended to handle abuse reports such as those in WHOIS
records or on a web site of the form abuse@domain [173]. Unfortunately, not all
ISPs have an abuse@domain address. Such addresses are only required for ISPs
that (care to) have an abuse team [175] and have not been mandatory in WHOIS
databases until recently. Even now, they are often only mandatory for new or
updated WHOIS entries and the objects and attributes holding this information
are not consistent across databases. We are able to find abuse addresses for 86%
of all exploit servers we milk. In practice, reporters use WHOIS to identify the
organization that has been delegated the abuser’s IP address. If an abuse email
does not exist for the organization (or cannot be found in its website) abuse
reports are sent to the organization’s technical contact, which is mandatory in
WHOIS. Unfortunately, after finding an email address to send the report, there
is no guarantee on its accuracy.

Sender’s identity. Abuse reports may end up being received by malicious
organizations (e.g., bullet-proof ISPs or hosters). Thus, using an individual’s real
identity in an abuse report can be problematic. On the other hand, abuse teams
may be suspicious of pseudonyms. Organizations that issue many abuse reports
such as SpamHaus [176] can rely on their reputation, but they do not act as abuse
aggregators. In this work, we use a pseudonym to hide our identities and still get
access to the communication with ISPs and hosters.

4.7 Analysis

Table 4.3 summarizes our milking, which started on March 7, 2012 and has been
operating for 12 months (the BlackHole/Phoenix dataset in [28] covered only until
April 20). We have milked a total of 502 exploit servers, hosted in 57 countries
and 242 ASes, and downloaded from them 46,514 malware executables, of which
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Milking Period 2012-03-07 – 2013-03-25

Malware executables milked 46,514

Unique executables milked 11,363

Domains milked 603

Servers milked 502

ASes hosting servers 242

Countries hosting servers 57

Malware executions 21,765

Total Uptime days 383

Table 4.3: Summary of milking operation.
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Figure 4.6: CDF of exploit server lifetime.

11,363 are unique (by SHA1 hash). A total of 603 DNS domains were observed
pointing to the 502 servers.

4.7.1 Exploit Server Lifetime

To understand how well defenders are reacting to the drive-by download threat,
we measure the exploit server lifetime, i.e., the period of time during which it
distributes malware. For this measurement we use only exploit servers found after
we updated our infrastructure to identify servers by landing IP (Section 4.4.2) and
remove servers for which we have sent abuse reports (Section 4.7.5). Figure 4.6
presents the CDF for the exploit server lifetime. The majority of exploit servers
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ASN Name CC Days ES AS Rank
up Size FIRE

16276 ovh FR 194.84 21 5,623 10

701 uunet US 139.60 1 8 -

44038 swisscom CH 76.8 1 8,496 -

47869 netrouting NL 70.0 18 4,395 -

43637 sol AZ 61.1 1 6,828 -

48716 ps KZ 52.0 1 8,530 -

56964 rmagazin RO 49.5 2 8,337 -

12695 di-net RU 47.6 9 175 -

36992 etisalat EG 47.1 1 1,136 -

197145 infiumhost RU 44.8 8 1,384 -

36444 nexcess.net.l.l.c US 37.4 4 5,798 -

56413 proservis LT 37.1 1 8,553 -

16265 leaseweb NL 36.8 8 3,089 7

58182 kadroviy RU 30.5 3 - -

5577 root LU 28.7 7 1,171 -

40676 psychz US 28.1 5 6,939 -

21788 burst US 27.8 14 3,942 -

28762 awax RU 27.0 15 4,644 -

44784 sitek UA 23.2 1 - -

15971 ecosoft RO 19.1 5 - -

Table 4.4: Top ASes by cumulative exploitation time.

are short-lived: 13% live only for an hour, 60% are dead before one day, and
the median lifetime is 16 hours. However, it is worrying to observe a significant
number of long-lived servers: 10% live more than a week, 5% more than two
weeks, and some servers live up to 2.5 months.

The median exploit server lifetime we measure is more than six times larger
than the 2.5 hours median lifetime of a exploit domain (a domain resolving to
the landing IP of an exploit server) measured by Grier et al. using passive DNS
data [28]. This shows the importance of identifying exploit servers by their IP
address, accounting for multiple domains pointing to the same server over time.

4.7.2 Hosting

In this section we analyze the hosting infrastructure. We find that miscreants
are abusing cloud hosting services. We also find, similar to prior work [63, 64],
autonomous systems hosting an inordinate number of exploit servers, compared
to the size of their IP space.

Cloud hosting services. Using WHOIS we can first determine which organi-
zation has been delegated the IP address of an exploit server and then use web
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Family Kit ES Files Milk Repack
Rate

zbot Kit 170 2,168 11,619 18.6

cridex 64 74 2,555 2.8

zeroaccess Aff 21 1,306 3,755 18.0

winwebsec Aff 18 5,820 16,335 59.5

spyeye Kit 11 7 342 2.0

CLUSTER:A 9 14 266 2.2

securityshield 5 150 307 11.8

CLUSTER:B 4 45 51 30.4

CLUSTER:C 4 1 4 1.0

smarthdd 4 68 453 3.1

CLUSTER:D 3 3 32 3.0

CLUSTER:E 3 1 4 1.0

CLUSTER:F 3 9 531 0.7

webprotect 3 3 26 3.9

cleaman 2 32 103 7.7

CLUSTER:G 2 5 148 1.5

CLUSTER:H 2 24 43 21.7

CLUSTER:I 2 9 17 9.4

Table 4.5: Top malware families by number of exploit servers observed distribut-
ing the family.
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Figure 4.7: Malware family distribution.

searches to determine if it offers cloud hosting services. Our results show that at
least 60% of the exploit servers belong to cloud hosting services, predominantly
to Virtual Private Server (VPS) providers that rent VMs where the renter gets
root access. This number could be larger because ISPs do not always reveal in
WHOIS whether an IP address has been delegated to a customer, who may be a
hosting provider. This indicates that drive-by operations have already embraced
the benefits of outsourcing infrastructure to the cloud.

AS distribution. Table 4.4 shows the top ASes by the cumulative uptime (in
days) of all exploit servers we milked in the AS. It also shows the number of
exploit servers in the AS, the CAIDA ranking of the AS by the number of IPv4
addresses in its customer cone (the lower the ranking the larger the AS) [177],
and the FIRE ranking for malicious ASes [63]. The two ASes with the largest
number of exploit servers are in Europe and the average life of an exploit server in
those ASes is 10 days and 4 days respectively, well above the median lifetime of 16
hours. Some small ASes host an inordinate number of exploit servers compared
to their ranking such as awas and infiniumhost, both located in Russia. There
are also 3 ASes in Eastern Europe that do not advertise any IP addresses or no
longer exist, which could indicate that they were set up for such operations. We
milked servers in 3 ASes that appear in the 2009 FIRE ranking. Two of them (ovh
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and leaseweb) appear also among our top ASes, which indicates that practices
at those ASes have not improved in 3 years.

4.7.3 Malware Families

Our classification has identified a total of 55 families. Table 4.5 shows the top 18
families sorted by the number of exploit servers observed distributing the family.
For each family, Table 4.5 shows whether the family is a known malware kit or
affiliate program, the number of servers distributing the family, the number of
unique files milked, the total number of binaries milked from that family, and
its repacking rate. Overall, the most widely distributed families are information
stealers (zbot, cridex, spyeye), PPI downloaders (zeroaccess), and rogue software
(winwebsec, securityshield, webprotect, smarthdd). The family most milked was
winwebsec, a fake antivirus affiliate program, while the one distributed through
most servers was zbot, a malware kit for stealing credentials.

Figure 4.7 shows the distribution of malware families over time. While most
families are distributed through short operations, there are a few families such
as zeroaccess, cridex, and zbot, which have been distributed throughout most of
our study.

Families with shared ownership. Since different malware families target dif-
ferent monetization mechanisms, malware owners may operate different families
to maximize income from compromised hosts. There are 50 servers distribut-
ing multiple malware families. Nine servers distribute different malware families
through the same landing URL, during the same period of time, and to the same
countries, e.g., a visit from the US with no referer would drop family 1, another
visit from the US a few minutes later family 2, and then again family 1. This
indicates those families share ownership, as there is no way to separate the in-
stalls from the different families. Some families that manifest shared ownership
are: CLUSTER:D and cleaman, and securityshield and smarthdd. There is also
shared ownership involving families known to be malware kits or affiliate pro-
grams such as winwebsec affiliates installing zbot and CLUSTER:L, and zbot
botmasters installing ramnit.

Repacking rate. Malware owners repack their programs periodically to avoid
detection by signature-based AV. On average, a malware family (excluding kits
and affiliate programs) is repacked 5.4 times a day in our dataset. This is a sharp
rise compared to the 0.1 times a day prior work reported during August 2010 [73].
This trend will further harm the detection rate of signature-based AVs. The
rightmost column in Table 4.5 shows the repacking rate for our top families. The
rate for families known to be kits or affiliate programs is artificially high, covering
multiple botnets or affiliates. There are other families with high repacking rates
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Features 1–4 Features 1–5
Alg. Clusters Largest Singletons Clusters Largest Singletons
Agg. 174 64 121 109 142 71
PAM 256 31 188 204 31 141

Features 1–4,6,7 Features 1–7
Alg. Clusters Largest Singletons Clusters Largest Singletons
Agg. 156 86 111 101 195 73
PAM 294 31 229 261 34 199

Table 4.6: Operation clustering results.

such as securityshield, CLUSTER:B, and CLUSTER:H. This could indicate that
those families are malware kits or affiliate programs.

4.7.4 Operations Analysis

In this section we evaluate our clustering approach to identify operations that use
multiple exploit servers. Unfortunately, we do not have ground truth available to
evaluate our clustering results in a quantitative fashion. In fact, if such ground
truth was available, then there would be no need for the clustering. Instead,
we argue qualitatively that our clustering identifies meaningful and interesting
drive-by operations.

Table 4.6 summarizes the clustering results. It compares the clustering results
with both algorithms and using 4 different feature sets. The two leftmost feature
sets (Features 1–4 and 1–5) correspond to the ones used in our prior work [44]
while the 2 rightmost feature sets correspond to adding the new features on con-
secutive IP addresses and exploit polymorphism. For the new feature sets, we
include the clustering results with and without the family feature for compari-
son. However, for the operation analysis below we focus on the results without
the family feature (Features 1–4,6,7), since we suspect some families like secu-
rityshield to be affiliate programs. Since those are distributed alongside other
malware, the family feature can overcluster. For each clustering algorithm and
feature set the table shows the number of clusters, the size of the largest clus-
ter, and the number of singleton clusters with only one server. As expected, the
aggressive algorithm groups the most, minimizing the number of clusters.

We first present a number of operations our clustering reveals (for the aggres-
sive clustering with 6 features unless otherwise noted), evaluating their correct-
ness with information not used by our features such as which kit was installed in
the exploit server and for affiliate programs, which affiliate a malware executable
belongs to (we extract the affiliate identifier from the network traffic). Finally,
we summarize the types of operations the clustering reveals and their distribution
properties including the number of servers used, their hosting, and the operation
lifetime.
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Phoenix operation. Using both PAM and aggressive all 21 Phoenix servers
are grouped in the same cluster, which exclusively distributes zbot. Here, the
clustering reveals that the Phoenix servers belong to the same operation without
using any features about the exploit kit. Both algorithms do not include servers
from other kits in the cluster, so they are not overclustering.

Reveton operation. We observe two clusters exclusively distributing the Reve-
ton ransomware, which locks the computer with fake police advertisements. One
cluster has 14 CoolExploit servers, the other 3 CoolExploit and one BlackHole 2.0.
This agrees with external reports on the Reveton gang switching from BlackHole
to the newer CoolExploit kit [178]. Here, the clustering captures an operation us-
ing different exploit kits, but possibly underclusters as both clusters likely belong
to the same operation.

Winwebsec operation. We observe the winwebsec fake AV affiliate program
distributed through 22 different servers in 8 clusters. There exists 3 singleton
clusters, each exclusively distributing the winwebsec executable of a different af-
filiate. Another cluster of 8 servers distributes affiliate 60830 as well as another
unknown malware family and zbot. The other 4 clusters distribute the executa-
bles of multiple affiliates. Here, there exist two possibilities: the same group could
have signed up to the winwebsec program multiple times as different affiliates,
or the affiliate program is managing the exploit server so that affiliates can con-
vert their traffic into installs. To differentiate between both cases, we check their
landing URLs. One of these clusters uses the same landing URL to distribute
the executables of affiliates 66801, 66802, and 66803. In this case, there is no
way to separate the installs due to each affiliate, which indicates those affiliates
belong to the same entity. The other three clusters use different landing URLs
for each affiliate, which indicates those servers are run by the affiliate program,
which provides a distinct landing URL to each affiliate.

We confirm that the winwebsec program manages their own exploit servers
through external means. We leverage a vulnerability on old versions of BlackHole,
where the malware URLs used a file identifier that was incremented sequentially,
and thus could be predicted. On March 12, we tried downloading file identifiers
sequentially from one of the servers distributing multiple winwebsec affiliates.
We found 114 distinct executables, of which 108 were winwebsec executables for
different affiliates, one did not execute, and the other 5 corresponded to other
malware families, including smarthdd and the Hands-up ransomware [179]. This
indicates that on March 12, the winwebsec program had 108 affiliates and that
the winwebsec managers, in addition to their own program, were also distributing
other rogue software.

Zeroaccess operations. Zeroaccess is also an affiliate program [31]. With the
aggressive algorithm there are 8 clusters distributing zeroaccess: 5 distribute a
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single affiliate identifier, the other 3 multiple. For two of these 3 the distribution
is simultaneous and on a different landing URL for each affiliate, which indi-
cates that the zeroaccess affiliate program also manages their own exploit server.
The other distributes two affiliate identifiers on the same URL, indicating those
affiliates belong to the same entity.

Zbot operations. There are 51 clusters distributing zbot in the aggressive
clustering. Of these, 38 clusters distribute exclusively zbot, the largest using 21
servers over 6 days. For each of these 38 clusters we compute the set of C&C
domains contacted by the malware milked from servers in the cluster. Only 3 of
the 38 clusters have C&C overlap, which indicates that our non-family features
capture enough shared configuration to differentiate operations distributing the
same malware kit.

Broken malware operation. We identify a cluster with 13 servers that oper-
ates on a single day and distributes a single file. Surprisingly, the file does not
execute. Apparently, the malware owners realized the malware was corrupt and
stopped the operation.

Operations summary. The clustering reveals two types of operations. Two
thirds of the clusters are singletons. They correspond to small operations with
one server that lives on average 14 hours. Most singletons distribute a single
family, which is often zbot or one of the generic families for which we have not
found a published name. The remaining are operations that leverage multiple
servers for their distribution. Multi-server operations use on average 6.2 servers
and diversify their hosting. On average, each multi-server operation hosts 1.2
servers per country, and 2 servers per AS. Multi-server operations last longer
with a median life of 5.5 days and only 1.2 servers operate on the same day. This
indicates that they are replacing servers over time to sustain distribution, rather
than using them for sudden bursts of installs (although we observe bursts like the
broken malware operation mentioned earlier).

Feature set comparison. We compare the feature sets in our prior work [44]
with the new feature sets, which add the consecutive IP addresses and exploit
hash features. With aggressive clustering, the new features reduce the number
of clusters and increase the average cluster size, while with PAM the two new
features further separate the clusters, slightly increasing their number. With
aggressive clustering, the exploit hash feature is most helpful, merging 13 small
clusters into the largest cluster (86 servers). To verify that indeed the exploit hash
feature is capturing exploit servers that share management, we analyze the time
distribution of the exploit instances that are served by multiple servers, finding
that their distribution happens very close in time. This supports our hypothesis
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that once the exploits are repacked by the managers, they are distributed to the
different exploit servers in the operation. The consecutive IP addresses feature
merges 5 old clusters into 2 new clusters. These new clusters correspond to oper-
ations distributing zbot and cridex. The new clusters show that the miscreants
are running 4-6 servers in the same cloud hosting provider, with all exploit servers
using consecutive IPs. This indicates that if a cloud hosting server is abused the
miscreants may install multiple servers in that hosting provider.

4.7.5 Reporting Analysis

We started sending abuse reports on September 3rd, 2012 for exploit servers that
we had been milking for 24 hours. Most abuse reports did not produce any
reply. Of the 19 reports we sent, we only received a reply in seven; 61% of the
reports were not acknowledged. For two of the ISPs we were unable to locate an
abuse@domain address in WHOIS. One of these had no technical support contact
either, so we resorted to web searches to find an email address. The absence of an
abuse@domain address indicates a lack of interest in abuse reports. As expected,
those reports did not produce a reply.

All initial replies contained a ticket number, to be included in further com-
munications about the incident. Three of them also provided a URL for a ticket
tracking system. Two of the replies came from ISPs to whom we had sent more
than one report (on different dates). Surprisingly, only one of the two reports
produced a reply. This lack of consistency indicates manual processing and that
the response to an incident may depend on the abuse team member that first
reviews the report.

After reporting a server, we keep milking it to understand how long it takes
to act on a report. Note that, these reaction times are lower bounds because the
servers could have been reported earlier by other parties. On average an exploit
server lives 4.3 days after a report. Exploit servers whose report did not generate
a response lived on average for 5.1 days after our report. Servers whose report
produced a reply lived for 3.0 days. Thus, the probability of action being taken
on the report when no reply is received is significantly smaller. Next, we detail
the reactions to the 7 reports with replies.

Report 1. The most positive report. The exploit server was a VPS hosted by
the ISP, which immediately disconnected it and notified us of the action (which
we confirmed).

Report 2. This large US ISP replied with an automated email stating that
they take abuse reports seriously but cannot investigate or respond to each of
them. No further reply was received and the server lived for 4 days.
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Report 3. A ticket was open with medium priority promising further notifica-
tion. No further response was received and the server lived for another day.

Report 4. The report was forwarded to a customer. After a day the server
was still alive so we sent a second report stating that the customer had not taken
action and the ISP proceeded to disconnect the server.

Report 5. The report was forwarded to a customer and our ticket closed with-
out waiting for the customer’s action. The server was still alive for 1.7 days.

Report 6. The reply stated they would try to get back within 24 hours and
definitely before 72 hours. The server lived two more hours and we never heard
back.

Report 7. The initial reply stated that it was a customer’s server and that
according to the Dutch Notice and Take-down Code of Conduct [180], we had
to notify the customer directly. Only if the customer did not reply after 5 days,
or their reply was unsatisfactory, we could escalate it to them. We reported
it to the client and after 5 days the server was still alive. We re-reported the
exploit server to the ISP who told us to contact the customer again, which we
did copying the ISP. This time the customer replied but was not willing to act
on the response unless we reveal our real identity, which we declined. It seems
that the ISP called them requesting the disconnection. The ISP later notified us
about the disconnection. As far as we can tell, the five days waiting time is not
part of the Dutch Notice and Take-down Code of Conduct.

These reports show that if the exploit server is hosted by a hosting provider
who is a customer of the ISP, the ISP simply forwards them the abuse report
and does no follow-up. It is up to the reporter to monitor the customer’s action
and re-report to the ISP in case of inaction. They also show how painful abuse
reporting can be and the need for an homogeneous code of conduct for takedowns.

4.8 Malicia Dataset

To foster future research, e.g., in malware classification, we have compiled the
data collected in this work into the Malicia dataset, which we make avail-
able to other researchers. The Malicia dataset can be requested by researchers
at academia, research labs, and industry labs following the instructions at the
dataset’s webpage [153]. It is released under an agreement to not redistribute the
dataset and only to researchers under contract from a research institution. Stu-
dents need to ask their supervisors to request to the dataset on their behalf. We
use basic identity checks (e.g., that the email address from which the request is
sent belongs to the institution requesting it) before releasing the dataset. At the
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time of writing the dataset has been released to 17 institutions: 15 universities
and 2 industrial research labs.

This section briefly describes the publicly available 1.0 release of the Malicia
dataset. Then, it describes the updates that we plan to add into release 1.1, which
we will make available upon publication of this manuscript.

4.8.1 Release 1.0

The current release of the Malicia dataset contains data for all the milking pe-
riod (March 7th, 2012 – March 25th, 2013). The dataset comprises 5 files. The
core of the dataset is a MySQL database with all the milking metadata including
when the malware was collected, from where the malware was collected, the mal-
ware classification, and exploit server information. In addition, there is a figure
that captures the database schema, a tarball with the malware binaries, another
tarball with the icons extracted from those malware binaries, and a signature file
for the Snort IDS produced by our FIRMA tool.

Database. The database comprises 8 tables. The most important table in the
DB is the MILK table, which contains a row for every time a malware was milked
from a exploit server. Every row contains the timestamp of when the malware
was milked, the landing URL, as well as identifiers linking to the other DB tables.
Other two important tables are the FILES and LANDING IP tables. The FILES
table contains a row for each unique malware binary (identified by SHA1 hash)
and its classification information. The LANDING IP table contains a row for
each exploit server (identified by the landing IP), the exploit kit installed in the
server, the server’s autonomous system number, and its country code.

Malware. The malware tarball contains 11,363 samples (.exe and .dll files).
For each malware binary, its network traffic, icon, and screenshot labels, as well
as the final family label, can be found in the FILES table in the DB.

Icons. The icons tarball contains 5,777 icons extracted from the executables.
We provide the icons for convenience, since they can be extracted from the pro-
vided malware.

4.8.2 Release 1.1

In the next release of the Malicia dataset we plan to include the exploits ex-
tracted from the network captures of our honeyclients (Section 4.4.4) and addi-
tional malware classification information.
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Exploits. This release will include an exploits tarball with the 172 exploits
collected, named using their SHA1 hash. The database will contain an additional
table where each row represents one exploit file and contains its hash, size, file
type, and CVE label.

Updated malware classification. The 1.0 release includes one month of un-
classified malware samples, which were collected after the DIMVA 2013 paper
was written, but before the dataset was released. The 1.1 release will update
the malware classification so that it covers all samples and corresponds to the
classification data used in this manuscript.

4.9 Discussion

In this section we discuss implications of our work, avenues for improvement, and
suggest other applications.

Takedown challenges. Setting up a exploit server in the cloud is a simple and
cheap process, while taking down a exploit server can be a complicated one and
may cost little to the exploit server owner, which can simply move to another
provider. We need to raise the cost for the exploit server managers of one of
their exploit servers being taken down and make it less anonymous to rent them.
Hosting providers should incorporate processes to verify the identity of the renter,
assign reputation to payment accounts, and closely monitor short leases, as these
are more likely to be abused. More emphasis is also needed on the attribution of
the organizations running drive-by operations and those providing the specialized
underground services supporting them. We believe that this work is a step in that
direction.

Criminal investigations. Our clustering is designed to be used by law enforce-
ment during the pre-warrant (plain view) phase of a criminal investigation [150].
During this phase, criminal activity is monitored and targets of importance are
selected among suspects. Our clustering can identify large operations among all
reported exploit servers, satisfying this requirement. The goal of the plain view
phase is gathering enough evidence to obtain a magistrate-issued warrant for the
ISPs and hosting providers for the servers in the operation.

Additional features. Other features can be incorporated to our clustering
to further identify servers with shared configuration. For example, we could
incorporate the web server version running in the exploit server and the registrant
for DNS domains pointing to the servers.
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Improving coverage. In this work we show that even with a small number
of drive-by download feeds we can identify exploit servers in the same operation.
Adding more feeds would improve our coverage, identifying more operations.
Acquiring feeds is challenging because many security vendors are careful about
sharing them since they consider them a competitive advantage.

Other applications. The problem of distinguishing from a pool of servers
running the same software which servers are managed by the same organization is
not exclusive to exploit servers. Malware kits pose similar challenges because they
provide configurable bot and C&C server software, shared among all organizations
buying the kit. Our technique could be applied to this scenario to identify C&C
servers in the same operation.

4.10 Conclusion

We have proposed a technique to identify drive-by download operations by clus-
tering exploit servers under the same management based on their configuration,
the exploits they serve, and the malware they distribute. Our analysis reveals
that to sustain long-lived operations miscreants are turning to the cloud. We
find that 60% of the exploit servers are hosted by specialized cloud hosting ser-
vices. We have performed what we believe is the first quantitative analysis of
exploit polymorphism. We observe that different types of exploits are repacked
differently; repacking can be integrated in the exploit kit to be performed auto-
matically, invoked manually using external tools, and some exploit types (e.g.,
fonts) may not be repacked at all. We have also analyzed the abuse reporting
procedure with discouraging results: most abuse reports go unanswered and even
when reported, it still takes several days to take down an exploit server.
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5
CyberProbe: Towards Internet-Scale Active

Detection of Malicious Servers

5.1 Preamble

This chapter reproduces the work ”CyberProbe: Towards Internet-Scale Active
Detection of Malicios Servers“ published at NDSS 2014. This paper shows a new
and general active probing technique to detect malicious servers. This work was
realized together with people from the IMDEA Software Institue and Texas A&M
university. Antonio Nappa has been the leading author of this work.

5.2 Introduction

C
ybercrime is one of the largest threats to the Internet. At its core is the use
of malware by miscreants to monetize infected computers through illicit
activities such as spam, clickfraud, ransomware, and information theft. To

distribute the malware, control it, and monetize it, miscreants leverage remotely-
accessible servers distributed throughout the Internet. Such malicious servers
include, among many others, exploit servers to distribute the malware through
drive-by downloads, C&C servers to control the malware, web servers to monitor
the operation, and redirectors for leading fake clicks to advertisements. Even P2P
botnets require “server-like” remotely accessible peers for newly infected hosts to
join the botnet.

Identifying the server infrastructure used by an operation is fundamental in
the fight against cybercrime. It enables take-downs that can disrupt the op-
eration [181], sinking C&C servers to identify the infected hosts controlled by
the operation [182], and is a critical step to identify the miscreants running the
operation, by following their money-trail [150].

Most current defenses identify malicious servers by passively monitoring for
attacks launched against protected computers, either at the host (e.g., AV in-
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stallations, HIDS) or at the network (e.g., NIDS, spamtraps, honeypots), or by
running malware in a contained environment monitoring their network commu-
nication [65, 66]. These passive approaches achieve limited coverage, as they
only observe servers involved in the attacks suffered by the protected hosts, or
contacted by the malware samples run. To increase coverage, security companies
aggregate information from multiple distributed sensors or execute more mal-
ware samples, but this requires a large investment or a large user base, and still
does not achieve Internet-scale coverage. These approaches are also slow; ma-
licious servers are detected asynchronously, when attacks happen to target the
protected hosts. This is problematic because miscreants often use dynamic in-
frastructures, frequently moving their servers to make detection difficult, as well
as in reaction to individual server takedowns [44].

By the time a new server is detected, a previously known one may already be
dead.

A prevalent active approach for identifying malicious servers is using hon-
eyclient farms, which visit URLs, typically found through crawling, looking for
exploit servers performing drive-by downloads [54, 57]. Such farms are at the
core of widely deployed browser defenses such as Google’s SafeBrowsing and Mi-
crosoft’s Forefront. However, honeyclients focus on exploit servers and do not
cover other malicious server types. In addition, achieving coverage is expensive,
requiring large investments in server farms to run the crawlers and honeyclients.
Thus, they are often deployed only by large corporations.

In this paper, we propose a novel active probing approach for detecting ma-
licious servers and compromised hosts that listen for (and react to) incoming
network requests. Our approach sends probes to remote hosts and examines
their responses, determining whether the remote hosts are malicious or not. The
probes are sent from a small set of scanner hosts to a large set of target hosts.
The targets may belong to the same network (e.g., a hosting facility), different
networks across the Internet (e.g., all hosting facilities of the same provider), or
correspond to all remotely accessible Internet hosts. Our approach is general
and can identify different malicious server types including C&C servers, exploit
servers, web front-ends, and redirect servers; as well as malware that listens for
incoming traffic such as P2P bots.

Compared with existing defenses, our active probing approach is fast, cheap,
easy to deploy, and achieves Internet scale. It does not require a sensor to be
hosted in every network. Using 3 scanners, it can probe the Internet in 24 hours
searching for a specific family of malicious servers, e.g., C&C servers of the same
malware family or exploit servers of a specific operation. The scanners can be
geographically distributed and rate-limited to respect bandwidth constraints on
the networks hosting them. To reduce the probing time we can simply add more
scanners. Given its speed, it can be used to understand the size of the server
infrastructure used by an operation at a small window of time.

Furthermore, it enables tracking (dynamic) malicious infrastructures over
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time, by periodically scanning for the servers of the same operation.
We have implemented our approach in a tool called CyberProbe, which

comprises two components: adversarial fingerprint generation and scanning. Cy-
berProbe implements a novel adversarial fingerprint generation technique, which
assumes that the servers to be fingerprinted belong to an adversary who does not
want them to be fingerprinted. Adversarial fingerprint generation takes as input
network traces capturing dialogs with servers of a malicious family of interest,
and builds a fingerprint, which captures what probes to send and how to deter-
mine from a target’s response if it is malicious. The fingerprint generation process
is designed to minimize the traffic sent to malicious servers and to produce in-
conspicuous probes to minimize the chance of detection by the adversary. The
scanning component takes as input a fingerprint and a set of target ranges and
probes those targets to check if they belong to the family of interest.

We have used CyberProbe to build 23 fingerprints for 13 malicious families
(10 malware families and 3 drive-by download operations). Using CyberProbe
and those fingerprints, we perform 24 scans (12 of them Internet-wide). The scans
identify 7,881 P2P bots and 151 distinct malicious servers including C&C servers,
exploit servers, payment servers, and click redirectors. Of those servers, 75% are
unknown to 4 public databases of malicious infrastructure: VirusTotal [25], URL-
Query [157], Malware Domain List [156], and VxVault [183]. This demonstrates
that for some families CyberProbe can achieve up to 4 times better coverage
than existing techniques. CyberProbe is also fast; in some cases it can even
identify malicious servers before they start being used by the miscreants, when
they are simply on stand-by.

Our results uncover an important provider locality property. A malicious
operation hosts an average of 3.2 servers on the same provider to amortize the
cost of setting up a relationship with the provider. As malicious servers are
often hosted in cloud hosting providers [44], these providers need to be aware
of provider locality. When they receive an abuse report for a malicious server,
chances are more servers of the same family are being hosted on their networks.

This work makes the following contributions:

• We propose a novel active probing approach for Internet-scale detection of
malicious servers. Our approach sends probes to remote target hosts and
classifies those targets as belonging to a malicious family or not. Compared
to current solutions our active probing approach is fast, scalable, easy to
deploy, and achieves large coverage.

• We implement our approach into CyberProbe, a tool that implements a
novel adversarial fingerprint generation technique, and three network scan-
ners. CyberProbe builds fingerprints from a set of network traces for a
malicious family, under the assumption that the adversary does not want
its servers to be fingerprinted, and probes target networks or the Internet
using those fingerprints.
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• We use CyberProbe to conduct 24 localized and Internet-wide scans for
malicious servers. CyberProbe identifies 151 malicious servers, 75% of
them unknown to existing databases of malicious activity. It also uncovers
an important provider locality property of the malicious servers hosting
infrastructure.

5.3 Overview and Problem Definition

CyberProbe uses an active probing (or network fingerprinting) approach that
sends probes to a set of remote hosts and examines their responses, determining
whether each remote host belongs to a malicious family or not. Network finger-
printing has been a popular security tool for nearly two decades [76]. A fingerprint
identifies the type, version, or configuration of some networking software installed
on a remote host. It captures the differences in the responses to the same probes
sent by hosts that have the target software installed and those that have not. A
fingerprint can identify software at different layers of the networking stack. Tools
like Nmap [121] use it to identify the OS version of remote hosts, and other tools
like fpdns [79] or Nessus [78] use it for identifying application-layer software such
as DNS or Web servers.

Our fingerprints target application-layer software and its configuration. Each
fingerprint targets a specific malicious family. For C&C servers and P2P bots,
a fingerprint identifies the C&C software used by a malware family. For exploit
servers, a fingerprint can identify the exploit kit software or a specific configu-
ration of the exploit kit. For example, a fingerprint could be used to identify
all BlackHole exploit servers on the Internet, and a different fingerprint could be
used to identify only BlackHole exploit servers belonging to a specific operation.
For the latter, we leverage the intuition that exploit servers belonging to the
same operation are managed by the same individuals, and therefore have simi-
larities in their (exploit kit) configuration [44]. Since an exploit kit is typically
a set of web pages and PHP scripts installed on an off-the-shelf web server (e.g.,
Apache or Nginx), the fingerprint needs to capture characteristics of the exploit
kit independent of the underlying web server.

A malicious family may have multiple fingerprints. For example, a malware
family may use different C&C protocols, or different messages in the same C&C
protocol. A different fingerprint can be generated for each of those protocols or
message types, but all of them identify the same family. Similarly, an exploit kit
stores a number of files on a web server (e.g., PHP, PDF, JAR), and a fingerprint
could capture a probe (and its corresponding response) for each of those files.

Our active probing approach takes as input network traces capturing traffic
involving a few seed servers that belong to the family of interest, often only one.
The fingerprints CyberProbe generates enable finding not only the seed servers,
but also other previously unknown servers from the same family. Thus, active
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Figure 5.1: Architecture overview.

probing provides a way of amplifying the number of servers known to be part of
the infrastructure of a malicious operation.

5.3.1 Problem Definition

The problem of active probing is to classify each host h in a set of remote tar-
get hosts H as belonging to a target family x or not. Active probing comprises
two phases: fingerprint generation and scanning. The goal of fingerprint gen-
eration is to produce one or more fingerprints for a family of interest x, where
each fingerprint FGx = 〈P, fP 〉 comprises a probe construction function P and a
classification function fP . The probe construction function returns, for a given
target host h ∈ H, the sequence of probes to be sent to the target host. The
classification function is a boolean function such that when we send the probes
P (h) to host h and collect the responses RP from h, fP (RP ) outputs true if h
belongs to the family of interest and false otherwise. The goal of scanning is given
a fingerprint, a port number, and a set of target hosts, to send the probes, collect
the responses, and determine whether each target host belongs to the family of
interest (i.e., matches the fingerprint).

5.3.2 Adversarial Fingerprint Generation Overview

In this work we introduce the concept of adversarial fingerprint generation, i.e.,
how to generate fingerprints for servers owned by an adversary who may not want
them to be fingerprinted.
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The challenge in traditional fingerprint generation is to find probes that trigger
distinctive responses from servers in the family of interest, i.e., responses that can
be differentiated from those by servers not in the family. A general framework
for fingerprint generation is proposed in FiG [88]. It generates candidate probes,
sends them to a set of training hosts comprising hosts in the family of interest
and outside of it, and applies learning algorithms on the responses to capture
what makes the responses from hosts in the family of interest distinctive.

Our adversarial fingerprint generation approach follows that framework, but
has two important differences. First, we consider an adversarial scenario where
the set of training hosts from the family of interest are malicious servers. We
do not control them and they may be tightly monitored by their owners. In this
scenario, it is critical to minimize the amount of traffic sent to those malicious
seed servers and to produce probes that look inconspicuous, i.e. that resemble
valid messages. As FiG generates random candidate probes, a huge number of
such candidates needs to be sent before finding a distinctive response, as most
random probes do not have proper protocol structure and will be ignored or incite
a generic error response. Instead, CyberProbe replays previously observed
requests to the seed servers. These requests come from valid interactions with
the malicious servers and thus are well-formed and inconspicuous. We obtain
such requests by executing malware in a contained environment (Section 5.3.4),
by monitoring a honeyclient as it is exploited in a drive-by download, or from
external analysis [184].

Second, our approach differs in the process used to build the classification
function. FiG’s classification functions have two main problems: they operate
on the raw response, ignoring any protocol structure, and they need a specific
matching engine.

Instead, a key intuition in this work is that the classification function can
be implemented by using a network signature on the responses from the targets.
Network signatures typically capture requests sent by malware infected hosts,
but can similarly capture responses from remote endpoints. This relationship
between fingerprint generation and signature generation enables prior and future
advances on either field to be applied to the other. CyberProbe generates
protocol-aware network signatures compatible with Snort [34] and Suricata [162],
two efficient signature-matching open source IDSes. Figure 5.2 shows example
fingerprints for a clickfraud operation and a drive-by download operation.

Figure 5.1a shows the adversarial fingerprint generation architecture. It takes
as input a set of network traces capturing interactions with servers from the
family of interest. First, it extracts the unique request-response pairs (RRPs)
in the traces. Then, it replays the requests to the servers in the traces, keeping
only replayed RRPs with distinctive responses. Next, it clusters similar requests.
Finally, it generates signatures for the responses in a cluster. It outputs one or
more fingerprints for the family of interest, each comprising a probe construction
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Figure 5.2: Example fingerprints.

function and a signature.

5.3.3 Scanning Overview

We use two types of scans based on the target ranges: Internet-wide and localized.
Internet-wide scans probe the entire IPv4 address space while localized scans
probe selected ranges. Our localized scans explore the provider locality of the
malicious servers. That is, whether the managers of a malicious family select a
small number of hosting and ISP providers and install multiple servers in each, to
amortize the cost of setting up a relationship with the provider (e.g., registering
with a fake identity, setting up working VMs).

Using the seed servers as a starting point, a localized scan probes only the
set of IP ranges belonging to the same providers that host the seed servers.
Localized scans do not allow identifying the full infrastructure of a malicious
family. However, they require sending only a very small number of probes, and
quite frequently they still identify previously unknown servers.

We envision two different application scenarios for our active probing ap-
proach. Some entities like antivirus vendors, police, or national security agencies
may want to use Internet-wide scans to identify all malicious servers of a family
on the Internet. However, other entities like hosting providers or ISPs may want
to simply scan their own IP ranges to identify malicious servers installed by their
clients.

Scanners. Figure 5.1b shows the architecture of CyberProbe’s scanning com-
ponent. It comprises three scanners: a horizontal TCP scanner, a UDP scanner,
and an application-layer TCP scanner (app-TCP). The horizontal TCP scanner
performs a SYN scan on a given port, and outputs a list of hosts listening on
that port. The UDP and app-TCP scanners send the fingerprint probes and col-
lect or analyze the responses. For TCP fingerprints, CyberProbe first runs the
horizontal scanner and then the app-TCP scanner on the live hosts found by the
horizontal scanner. This allows reusing the results of the horizontal scanner for
multiple scans on the same port. All 3 scanners can be distributed across multiple
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scanner hosts. The receiver component of the UDP and appTCP scanners can
output a network trace containing all responses or run Snort on the received traf-
fic to output the set of hosts matching the fingerprint. Saving the network trace
requires significant disk space (e.g., 50 GB for an Internet-wide HTTP scan), but
enables further analysis of the responses.

Currently, our UDP and appTCP scanners probe one fingerprint at a time
since different fingerprints, even if for the same family, may use different transport
protocols and require scanning on different ports. The scanners can be easily
modified to scan with multiple fingerprints if the target port and target hosts
are the same and the fingerprints use the same transport protocol. However, an
important goal of the scanning is to spread the traffic received by a target over
time and each additional fingerprint makes the scan more noisy.

5.3.4 Malware Execution

Executing malware in a contained environment is a widely studied problem [185,
65, 66]. For active probing, the main goals are acquiring the malicious endpoints
known to the malware sample (e.g., C&C servers and P2P peers) and collecting
instances of the network traffic between the sample and the malicious endpoints.
Since C&C servers are highly dynamic it is important to run the malware soon
after collection to maximize the probability that at least one of the C&C servers
is alive.

We use two containment policies for running the malware: endpoint failure
and restricted access. The endpoint failure policy aborts any outgoing communi-
cation from the malware by sending error responses to DNS requests, resets to
SYN packets, and sinking outgoing UDP traffic. This policy is designed to trick
the malware into revealing all endpoints it knows, as it tries to find a working
endpoint. The restricted access policy allows C&C traffic to and from the Inter-
net, but blocks other malicious activities such sending spam, launching attacks,
or clickfraud. This policy also resets any connection with a payload larger than
4 KB to prevent the malware to download and install other executables.

The malware is first run with the endpoint failure containment policy and
a default configuration. If it fails to send any traffic, it is rerun with different
configurations. For example, it is queued to be rerun on a different VM (e.g., on
QEMU if originally run on VMWare) and for an extended period of time (e.g.,
doubling the execution timer). This helps to address malware samples that use
evasion techniques for specific VM platforms, and to account for malware samples
that may take longer to start its network communication.
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5.4 Adversarial Fingerprint Generation

This section explains the process of generating fingerprints for a malicious family
of interest starting from a set of network traces. Fingerprint generation comprises
4 steps. First, it extracts from the network traces the set of request-response pairs
(RRPs) (Section 5.4.1). Then, it replays the requests to the live servers collecting
their responses (Section 5.4.2). Next, it clusters RRPs with similar requests
(Section 5.4.3). Finally, it generates signatures for each cluster (Section 5.4.4).

Benign traffic pool. Adversarial fingerprint generation also takes as input a
pool of benign traffic used to identify which parts of the responses from servers
in the family are distinctive, i.e., do not appear in benign traffic. This pool
comprises three traces: two of HTTP and HTTPS traffic produced by visiting
the top Alexa sites [186] and a 2-day long trace comprising all external traffic
from a network with 50 users, captured at the network’s border. We scan the
traces with two IDS signature sets, verifying that they do not contain malicious
traffic.

5.4.1 RRP Feature Extraction

From the network traces, CyberProbe first extracts the RRPs, i.e., TCP con-
nections and UDP flows initiated by the malware or honeyclient towards a remote
responder, and for which some data is sent back by the responder. Here, a UDP
flow is the sequence of UDP packets with the same endpoints and ports that times
out if no communication is seen for a minute. For each RRP, CyberProbe ex-
tracts the following feature vector:

〈proto, sport, dport, sip, dip, endpoint, request, response〉

where proto is the protocol, sport, dport, sip, dip are the ports and IP addresses,
and endpoint is the domain name used to resolve the destination IP. The request
and response features represent the raw content of the request and response.

To extract the protocol feature CyberProbe uses protocol signatures to
identify standard protocols commonly used by malware such as HTTP. Protocol
signatures capture keywords present in the early parts of a message (e.g., GET or
POST in HTTP) [187, 188]. They are able to identify the protocol even if it uses
a non-standard port, and can also identify non-standard protocols on standard
ports. Both situations are common with malware. For unknown application
protocols, the protocol feature is the transport protocol.

RRPs for which the request endpoint is one of the top 100,000 Alexa do-
mains [186] are discarded. This removes traffic to benign sites, used by malware
to test connectivity and by exploit servers to download vulnerable software or
redirect the user after exploitation.
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In addition, it removes RRPs that have identical requests (excluding fields
known to have dynamic data such as the HTTP Host header), to avoid replaying
the same request many times. From the remaining RRPs CyberProbe builds
an initial list of malicious endpoints. For this, it resolves each domain in the
endpoint feature to obtain the current IP addresses the domain resolves to. It
returns the union of the destination IP addresses and the resolved IPs.

5.4.2 Replay

The next step is to replay the requests in the RRPs extracted from the network
traces to the known malicious endpoints.

The goal is to identify requests that lack replay protection, i.e., requests that
if replayed to the same server at a later time or to another server of the family
still incite a distinctive response. CyberProbe replays each unique request in
the RRPs to every entry in the initial list of malicious endpoints, collecting the
responses from endpoints that are alive.

The replay uses a commercial Virtual Private Network (VPN) that offers exit
points in more than 50 countries, each with a pool of IP addresses, totaling
more than 45,000 IPs. Using a VPN is important for two reasons. First, while
the requests CyberProbe replays have a valid protocol syntax, there is still
a small chance that they are replayed in an incorrect order or are no longer
valid. If so, the managers of the malicious family could notice it and block the
sender’s IP address. In addition, we are interested in requests that generate a
response without requiring any prior communication with the malicious server.
Since CyberProbe replays all requests to each endpoint, it is important that the
request being replayed is not influenced by any state that a previously replayed
request may have set in the server. To achieve independence between replays, the
replayer changes the VPN exit node (an thus its observable IP address) for each
request sent to the same endpoint. Intuitively, a server keeps a separate state
machine for each client that connects to it. Thus, by employing a previously
unused IP address, the server will be in its initial state when it receives the
replayed request.

Filtering benign servers. A common situation when replaying is that the IP
address of a malicious server in the input network traces may have been reas-
signed to a benign server. Responses from benign servers need to be removed
before building a signature to avoid false positives. To filter responses from be-
nign servers, CyberProbe leverages the intuition that a benign server will not
understand the replayed request and typically will ignore it (e.g., for a binary
C&C request) or return an error (e.g., HTTP 404). Thus, as a first step Cy-
berProbe removes from the replayed RRPs those with no response or where
the response is an error (e.g., HTTP 4xx). However, a surprisingly large number
of benign HTTP servers reply with a successful response (i.e., HTTP 200 OK)
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to any request, possibly including a custom error message in the body of the
response. Thus, a technique is needed to identify custom error messages without
a priori knowledge of how they may look.

To address this challenge, CyberProbe also sends an HTTP request for
a random resource to each potentially malicious HTTP server, leveraging the
insight that if the responses from a server to the replayed request and to the
random request are similar, most likely the server did not understand either
request and the response is an error message.

CyberProbe considers two HTTP responses similar if they have the same
result code, the same Content-Type header value, and similar content. Two
non-HTML contents are similar if their MIME type as returned by the UNIX
file tool is the same. For HTML documents, it uses an off-the-shelf similarity
package [189], which serializes the HTML trees of the pages as arrays and finds
the longest common sequence between the arrays. It measures similarity as:

d(a, b) =
2 ∗ length(LCS(array(a), array(b)))

length(array(a)) + length(array(b))

.
After removing errors and responses from benign servers the remaining RRPs

are replayed twice more to the endpoints that responded, so that variations in
the responses, e.g., changes in the HTTP Date and Cookie headers, are captured.
The output of the replay phase are the remaining replayed RRPs. The original
RRPs extracted from the network traces are not part of the output, i.e., only
RRPs for which the request successfully replays are used to build the fingerprint.
The unique endpoints in the output RRPs are the seed servers.

5.4.3 Clustering RRPs by Request Similarity

Next, CyberProbe clusters the RRPs by request similarity to identify instances
of the same type of request across the network traces. This step prevents gener-
ating multiple fingerprints of the same type and enables producing more general
fingerprints. We use two separate clusterings, a protocol-aware clustering for
HTTP and a transport clustering for other protocols.

For HTTP, CyberProbe groups RRPs for which the requests have the same
method (e.g., GET or POST) and satisfy the following conditions:

• Same path. The path in both URLs is the same and does not correspond
to the root page.

• Similar parameters. The Jaccard index of the sets of URL parameters is
larger than an experimentally selected threshold of 0.7. Parameter values
are not included.
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For other protocols, CyberProbe groups packets from the same transport
protocol, with the same size and content, and sent to the same destination port.
The output of the request clustering is the union of the traffic clusters output
by the two clusterings. Each cluster contains the RRP feature vectors and the
clusters do not overlap.

Probe construction function. From the requests in each cluster, Cyber-
Probe produces a probe construction function. The probe construction function
is basically one of the probes in the cluster where the value of a field may be
replaced by the special TARGET and SET macros. The TARGET macro rep-
resents that the field needs to be updated with the value of the target endpoint
during scanning, e.g., the HTTP Host header. The SET macro is used for fields
that have different values in the cluster’s requests. It represents that the value
of the field can be chosen from this set when generating a new probe during
scanning.

5.4.4 Signature Generation

For each cluster, signature generation produces signatures that capture parts of
the responses that are unique to the family of interest, i.e., that are uncommon
in the benign traffic pool. CyberProbe builds token-set payload signatures,
which are supported by both Snort and Suricata.

A token set is an unordered set of binary strings (i.e., tokens) that matches
the content of a buffer if all tokens in the signature appear in the buffer, in any
order. The more tokens and the longer each token the more specific the signature.

Algorithm 1 describes the signature generation. Its salient characteristics are
that when the protocol is known (e.g,. HTTP) the tokenization is performed on
fields and that multiple signatures may be generated for each cluster. For each
field in the responses in the cluster, it identifies distinctive tokens i.e., tokens
with high coverage and low false positives. We define the false positive rate of a
token in a field to be the fraction of responses in the benign pool that contain
the token in the field, over the total number of responses in the benign pool. The
coverage is the fraction of responses in the cluster with the token in that field,
over the total number of responses in the cluster. A token is distinctive if it has
a file coverage larger than 0.4 and a false positive rate below 10−9.

Algorithm 1 can generate multiple signatures because distinctive tokens do not
need to appear in all responses in the traffic cluster. This is important to handle
noise in the cluster, e.g., from incorrectly labeled malware in the input traces.
The get distinct fields function returns all fields in the response (or a single field if
the protocol is unknown), except fields that contain dynamically generated data
(e.g., the Date and Set-Cookie HTTP headers), as those fields should not be part
of the signature. The tokenize function uses a suffix array [190] to extract tokens
larger than 5 bytes that appear in the set of unique field values.
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Algorithm 1 Signature Generation Algorithm

1 def tokenize responses(cluster) {
2 tokens info = []
3 # Get unique fields for responses in cluster
4 unique fields = get distinct fields(cluster)
5 for field in unique fields
6 # Get unique values for field
7 unique values = get distinct fields values(field)
8 # Tokenize unique field values
9 tokens = tokenize(unique values)

10 for token in tokens
11 # Get feature vectors for responses with the token
12 vectors = get responses(token)
13 # Add token
14 tokens info.add(field,token,vectors)
15 return tokens info
16
17 def refine signature(tokens info,curr sig)
18 tinfo,rem tokens info =
19 get token max overlap(tokens info,curr sig)
20 rsig = add token(curr sig,tinfo)
21 if cov(rsig) = cov(curr sig)
22 refine signature(rem tokens info,rsig)
23 if fp(curr sig) < thresfp
24 return curr sig
25 refine signature(rem tokens info,rsig)
26
27 def generate signatures(cluster) {
28 signatures = []
29 tokens info = tokenize responses(cluster)
30 while true
31 # Find token that maximizes coverage
32 tinfo,rem tokens info,cov increase =
33 get max coverage token(signatures,tokens info)
34 if cov increase < threscov break
35 else
36 initial sig = add token(Ø,token info)
37 refined sig = refine(rem tokens info,initial sig)
38 if refined sig
39 signatures.add(refined sig)
40
41 return signatures
42 }

5.5 Scanning

This section first describes general characteristics of our scanning such as the
target ranges to scan, scan rate, scan order, and scanner placement. Then, it
details the implementation of our horizontal, UDP, and appTCP scanners.

5.5.1 General Scanning Characteristics

Scan ranges. We perform 3 types of scans based on the ranges to be probed:
localized-reduced, localized-extended, and Internet-wide. For Internet-wide scans,
prior work has used different ranges that qualify as “Internet-wide” [191, 99, 101,
100]. These studies do not scan the full Internet IPv4 space (F ), but rather
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Full (F ) Unreserved (U) Allocated (I) BGP (B)

4.3B (100%) 3.7B (86%) 3.7B (86%) 2.6B (60%)

Table 5.1: Number of IPv4 addresses (in billions) for different Internet-wide target
sets.

the non-reserved IPv4 ranges (U ⊆ F ) [191], the IANA-allocated blocks (I ⊆
U) [99, 100], or the set of advertised BGP ranges (B ⊆ I) [101]. These ranges
differ in their sizes, which are shown in billions of IP addresses in Table 5.1. The
U and I ranges are nowadays the same as all the non-reserved IPv4 space has
been allocated by IANA. In this work, for Internet-wide horizontal and UDP
scans, we first collect the BGP ranges advertised the day of the scan from the
RouteViews site [192]. Then, we union those ranges removing any route overlaps.
The table shows that using the BGP information to exclude non-routable ranges
reduces the scan range up to 40%.

Localized scans focus on IP ranges belonging to providers that have been
observed in the past to host a server of the malicious family. To select the target
ranges for localized scans we use the IP addresses of the seed servers and the
BGP route information. For localized-reduced scans, we obtain the most specific
BGP route that contains each seed’s IP address, and output the union of those
routes. For localized-extended scans, for each seed server we first obtain the most
specific route containing the seed’s IP. From each of those routes, we extract the
route description, which typically identifies the provider that the route belongs
to. Then, we query again the BGP information for the list of all other routes
with the same description (i.e., from the same provider) and make their union
our target set.

Scan rate. Nowadays, a well-designed scanner running on commodity hardware
can send fast enough to saturate a 1 Gbps link (i.e., 1.4 Mpps) [104] and some
work enables commodity hardware to saturate even 10 Gbps links [103]. Thus, a
scanner often needs to be rate-limited to avoid saturating its uplink, disconnecting
other hosts in the same network. In this work, for good citizenship we limit each
horizontal and UDP scanner host to a maximum of 60,000 packets per second (26
Mbps), and each appTCP scanner host to a rate of 400 connections per second.

Scan order. Our horizontal and UDP scanners select which target to probe
next using a random permutation of the target address space. Drawing targets
uniformly at random from the target ranges mixes probes to different subnets
over time, avoiding the overload of specific subnets [102]. To scan in random
order, without needing to keep state about what addresses have already been
scanned or are left to be scanned, our horizontal and UDP scanners use a linear
congruential generator (LCG) [193]. Since the IP addresses output by the hori-
zontal scanner are not sequential, the appTCP scanner does not use a LCG but
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simply randomizes the order of the target IP addresses.

Whitelisting. The LCG iterates over a single consecutive address range. How-
ever, the BGP ranges to be scanned may not be consecutive. Also, we may need
to exclude certain ranges, e.g., those whose owners request so. To address these
issues, before probing a target, the horizontal and UDP scanners check if the
target’s IP is in a whitelist of IP addresses to scan, otherwise they skip it. The
whitelist is implemented using a 512 MB bit array, where each bit indicates if
the corresponding IP address needs to be probed. This ensures that checks are
done in O(1). Since most commodity hardware has a few GBs of memory this is
a good tradeoff of memory for efficiency. For the appTCP scanner, which does
not use an LCG, we simply remove IP addresses that should not be probed from
the input target list.

Scanner placement. Multiple scanners can be used to distribute a scan. Since
a single scanner may be able to saturate its uplink it is typically not needed to use
multiple scanners on the same network. It is preferable to add them in separate
networks with independent uplinks. All scanners use the same generator for the
LCG. To split the target hosts between scanners, we assign each scanner a unique
index from zero to the number of scanners minus one. All scanners iterate over
the targets in the same order, but at each iteration only the scanner whose index
matches the target IP modulo the number of scanners sends the probe.

5.5.2 Horizontal Scanner

An efficient horizontal scanner is fundamental to perform fast and resource-
efficient scans because the large majority of IP addresses (97%–99% depending on
the port) do not send responses to probes. Two important characteristics of our
horizontal scanner are the lack of scanning state and the asynchronous sending
of probes and receiving of responses.

Our horizontal scanner performs TCP SYN (or half-open) scans. While there
exists different types of TCP scans [121], TCP SYN scans are arguably the most
popular one because they can efficiently determine if a target host is listening on
a port. They are also called half-open scans because they never complete a full
TCP handshake. A SYN packet is sent to a target and if a SYNACK response
is received, the scanner marks the target as alive and sends it a RST packet,
which avoids creating state on the scanner or the target. A single SYN packet
is sent to each target without retransmissions, which prior work has shown as a
good tradeoff between accuracy (low packet loss on the backbone) and efficiency
(avoiding doubling or tripling the number of probes) [101]. The horizontal scanner
is implemented using 1,200 lines of C code and runs on Linux. It comprises a
sender and a receiver module. Both modules are independent and can be run on
the same or different hosts. We describe them next.
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Sender. The sender uses raw sockets to send the probes. Raw sockets bypass
the kernel network stack so that no state is kept for a probe. They prevent the
kernel from doing route and ARP lookups, and bypass the firewall. When a
SYNACK packet is received, the kernel automatically sends a RST packet since
it is unaware of the connection. On initialization the sender creates a buffer for
a raw Ethernet request. It fills all fields in the Ethernet, IP, and TCP headers
except the destination IP address, source port, sequence number, and TCP and
IP checksums.

Using a single buffer and caching most field values reduces memory accesses,
increasing performance. The source IP is the IP address of the receiver. If the
receiver runs on a separate host the sender spoofs the receiver’s IP address. To
enable the receiver to identify valid responses, the sequence number is filled with
the XOR of the target IP and a secret shared between the sender and the receiver.
The checksums can be computed on software or outsourced to the network card
if it supports checksums on raw sockets.

The sender implements rate limiting by enforcing an inter-probe sleeping time.
The Linux kernel does not provide fine-grained timers by default, so OS functions
like usleep or nanosleep are too coarse for microsecond sleeps. Instead, the scanner
deactivates CPU scaling, computes the sleeping time in ticks, and then busy-waits
using the rdtsc instruction until it is time to send the next probe.

Receiver. The receiver is implemented using libpcap [194] and set to sniff all
SYNACK packets. Note that the number of received packets is much smaller
than the number of probes, e.g., only 2.6% of the advertised IPs listen on 80/tcp.
Thus performance is less critical in the receiver than in the sender. Once the
sender completes, the receiver keeps listening for a predefined time of 5 minutes
to capture delayed responses. The receiver uses the shared secret, the acknowl-
edgment number, and the source IP to check if the SYNACK corresponds to a
valid probe. If so, it outputs the source IP to a log file of live hosts. There is
no need to keep state about which IPs have already responded. Once the scan
completes, duplicated entries due to multiple SYNACKs are removed from the
log.

5.5.3 AppTCP & UDP Scanners

The appTCP and UDP scanners need to be able to send probes from different
fingerprints, which may capture different application-layer protocols and message
types. The probe construction function in a fingerprint abstracts the specificities
of probe building from the scanner. Each probe construction function comprises
two C functions. The first function is called during initialization and builds a
default probe. Then, for each target host the appTCP or UDP scanner passes
the target IP to the second function, which returns the TCP or UDP payload for
the probe (e.g., updating the default probe with target-specific field values).
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Type Source Families Pcaps RRPs RRPs Seeds Fingerprints
Replayed

Malware VirusShare 152 918 1,639 193 19 18
Malware MALICIA 9 1,059 764 602 2 2
Honeyclient MALICIA 6 1,400 42,160 9,497 5 2
Honeyclient UrlQuery 1 4 11 11 1 1

Table 5.2: Adversarial fingerprint generation results

Both scanners can apply the fingerprint by running Snort on the received
traffic. In addition, they can collect the responses into a network trace and then
run Snort offline on the trace. In our experiments we store the responses to enable
post-mortem analysis and for collecting benign responses to enhance the benign
traffic pool.

AppTCP scanner. The appTCP scanner is implemented using the libevent [195]
library for asynchronous events, which is able to handle thousands of simultane-
ous non-blocking connections. It comprises 600 lines of C code plus the code
that implements the probe construction functions for each fingerprint. It takes
as input the list of live hosts identified by the horizontal scanner. To limit the
connection rate the appTCP scanner operates on batches and the batch size
limits the maximum number of simultaneously open connections. Reception is
asynchronous, i.e., each received packet triggers a callback that reads the content
from the socket. It sets a maximum size for a response since most classification
functions operate on the early parts of a response. The default is 1MB but can
be modified for any fingerprint. This limit is needed for servers that respond to
any request with a large stream of data. For example, SHOUTCast [196] radio
streaming servers may send a 1GB stream in response to an HTTP request for a
random file.

UDP scanner. The UDP scanner uses the same architecture as the horizontal
scanner, but builds instead UDP probes using the fingerprint’s probe construction
function. It comprises 800 lines of C code. The sender component also uses raw
sockets, but embeds the secret in the source port instead of the sequence number.
Similar to the appTCP scanner, the receiver component sets the maximum size
of a response to 1MB.

5.6 Evaluation

This section presents the evaluation results for adversarial fingerprint generation
(Section 5.6.1), our scanning setup (Section 5.6.2), scanning results (Sections 5.6.3
to 5.6.5), and detailed analysis of selected operations (Section 5.6.6).
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5.6.1 Adversarial Fingerprint Generation Results

We obtain malware from two different sources: VirusShare [197] and the MALI-
CIA dataset [46]. We run the malware on our infrastructure to produce the
network traces used as input to the fingerprint generation. VirusShare malware
is not classified, so we use a traffic clustering algorithm to split the executables
into families [40]. The MALICIA dataset contains malware distributed through
drive-by downloads, already classified into families, so clustering is not needed.
For the exploit servers, we use network traces of the honeyclients collecting the
malware in the MALICIA dataset. In addition, we add another exploit server
family not present in MALICIA that we identify in URLQuery [157] and use a
honeyclient to collect the network traces.

Table 5.2 summarizes the results of adversarial fingerprint generation. It
shows the type and source of the network traces, the number of malicious families,
the number of network traces processed, the RRPs in those traces, the RRPs
replayed after filtering, and the number of seeds and fingerprints output. Overall,
CyberProbe produces 23 fingerprints for 13 families: 3 exploit server families
and 10 malware families. Of those, one fingerprint uses UDP and the rest use
HTTP. The number of generated fingerprints is low compared to the number
of network traces processed because some families have many traces (e.g., 700
for winwebsec) and because much malware connects to dead servers, which have
likely been replaced by newer ones.

5.6.2 Scanning Setup

For the localized horizontal and UDP scans we use a single scanner at one of our
institutions. This machine has 4 CPU cores running at 3.30GHz, a network con-
nection at 1Gbps and 4GB of RAM. To distribute the Internet-wide horizontal
and UDP scans across different hosts and locations we also rent 4 large instances
in a cloud hosting provider. For the HTTP scans, we rent smaller virtual ma-
chines on virtual private server (VPS) providers and also use two dedicated hosts
installed at one of our institutions. For the VPSes we select the cheapest instance
type offered by each provider that satisfies the following minimum requirements:
1GHz, 512RAM, 100Mbps link, and 15GB hard drive.

Different providers may offer different virtualization technologies (e.g., XEN,
OpenVZ, VMWare). The cheapest ones are often based on OpenVZ technology
(starting at $4/month). In total we spent close to $600 on cloud hosting for the
experiments in this paper.

The selected instances on different providers have different resources and those
resources are sometimes not well specified. For example, some providers only
specify the maximum amount of network traffic the instance can send over the
rental period (e.g., 1TB/month), but do not specify the network interface band-
width and whether they perform some additional rate-limiting of the VMs. To
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HID Type Start Date Port Targets SC Rate(pps) Time Live Hosts
1 E 2013-03-12 8080 13,783,920 1 300 14.3h 193,667 (1.4%)
2 R 2013-03-26 80 4,096 1 60 1.2m 2,053 (50.1%)
3 E 2013-04-08 80 7,723,776 1 125 19.1h 316,935 (4.1%)
4 R 2013-04-14 80 24,576 1 200 2.4m 14,134 (57.5%)
5 E 2013-04-15 80 32,768 1 200 3.6m 14,869 (45.3%)
6 E 2013-04-17 80 1,779,965 1 125 3.9h 751,531 (42.2%)
7 E 2013-04-20 8080 19,018,496 1 900 6.0h 301,758 (1.6%)
8 R 2013-04-23 80 105,472 1 250 7.2m 8,269 (7.8%)
9 R 2013-04-28 80 668,672 1 5,000 2.4m 36,148 (5.4%)

10 I 2013-04-30 80 2,612,160,768 4 50,000 3.5h 67,727,671 (2.6%)
11 I 2013-04-30 8080 2,612,160,768 4 50,000 3.5h 239,517 (0.01%)
12 I 2013-07-01 80 2,510,340,631 5 50,000 2.9h 65,633,678 (2.6%)
13 I 2013-08-05 80 2,459,631,240 4 60,000 2.9h 63,534,118 (2.6%)

Table 5.3: Horizontal scanning results.

address the resource differences across VMs we split the target addresses propor-
tionally to the hard drive and network bandwidth (when known) of the rented
instances. This may result in some scanners being assigned larger ranges than
others, e.g., 3 scanner hosts being used one with 50% and each of the other two
with 25% of the total target addresses.

5.6.3 Horizontal Scanning

For TCP fingerprints, CyberProbe first performs a horizontal scan of the de-
sired target ranges to identify hosts listening on the target port. Table 5.3 sum-
marizes our horizontal scans. It shows the scan type, i.e., localized-reduced (R),
localized-extended (E), or Internet-wide (I); the date of the scan; the target port;
the number of target IP addresses scanned; the number of scanners used (SC);
the sending rate for each scanner; the duration of the scan; and the number (and
percentage) of live hosts found.

The first 9 scans are localized scans, targeting small ranges from 4,096 to
19 million IP addresses, and performed at very low scan rates. The goal of
these localized scans was to test our scanning infrastructure, and to perform an
initial evaluation of whether our hosting provider locality hypothesis holds (next
subsection). The last 4 are Internet-wide scans, three on 80/tcp and one on
8080/tcp. Using 5 scanner hosts at a rate of 50,000 packets per second (pps), or
4 scanners at 60,000pps, it takes less than 3 hours for CyberProbe to perform
an Internet-wide horizontal scan.

The Internet-wide scans found 2.6% of all advertised IP addresses listening
on 80/tcp and 0.01% on port 8080. The 80/tcp scan on April 30th found 67.7
million hosts, the scan on July 1st 65.5 million, and the August 5th scan 63.5
million. The 8080/tcp scan found 239K live hosts. The difference on live hosts
found between the 80/tcp scans is due to changes on the total size of the BGP
advertised routes on the scan days. The live hosts intersection between the April
30th and July 1st 80/tcp scans is 43.9 million IPs (67%). That is, two thirds
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ID Start Date Port Fingerprint Targets HID SC Time Resp. Found Known New VT UQ MD VV
1 2013-01-08 8080 doubleighty 4K - 1 62h 92% 5 4 1 0 3 1 0
2 2013-03-03 8080 doubleighty 193K 1 1 79m 91% 11 2 9 0 1 0 0
3 2013-03-26 80 winwebsec 2K 2 1 3m 96% 2 1 1 0 1 0 0
4 2013-04-08 80 winwebsec 316K 3 1 5.3h 22% 2 2 0 0 1 0 0
5 2013-04-15 80 blackrev 14K 4 1 18m 94% 1 1 0 0 0 0 0
6 2013-04-16 80 blackrev 14K 5 1 19m 94% 2 1 1 0 0 0 0
7 2013-04-17 80 bh2-adobe 751K 6 1 9.9h 55% 3 1 2 1 1 0 0
8 2013-04-17 8080 doubleighty 301K 7 1 5.1h 22% 4 2 2 0 0 0 0
9 2013-04-23 80 kovter-links 8K 8 1 8m 36% 2 1 1 1 0 0 0

10 2013-04-23 80 clickpayz1 8K 8 1 8m 31% 17 2 15 0 0 0 0
11 2013-04-28 80 clickpayz1 36K 9 1 35m 38% 17 15 2 1 0 0 0

12 2013-07-06 80 bh2-adobe 65.6M 12 3 24.7h 75% 10 1 9 3 1 0 0
13 2013-07-11 80 clickpayz1 65.6M 12 3 26.5h 74% 22 17 5 7 0 0 0
14 2013-07-16 80 clickpayz2 65.6M 12 3 26.6h 76% 25 12 13 5 1 0 0
15 2013-07-20 80 kovter-pixel 65.6M 12 3 26.5h 72% 7 1 6 4 0 0 0
16 2013-07-22 80 bh2-ngen 65.6M 12 3 24.6h 72% 2 1 1 0 0 0 0
17 2013-07-25 80 optinstaller 65.6M 12 3 24.5h 71% 18 1 17 3 2 0 1
18 2013-07-27 80 bestav-pay 65.6M 12 4 15.6h 70% 16 2 14 6 5 0 0
19 2013-07-29 80 bestav-front 65.6M 12 4 13.2h *62% 2 1 1 1 1 0 0
20 2013-07-31 80 ironsource 65.6M 12 4 13.1h *59% 7 1 6 5 5 0 0
21 2013-08-05 80 soft196 65.6M 12 2 23.8h 71% 8 1 7 6 5 0 0
22 2013-08-06 80 winwebsec 63.5M 13 3 15.6h 85% 11 0 11 7 3 0 0

TOTALS: 194 70 124 50 30 1 1

Table 5.4: HTTP scan results.

of the 80/tcp live hosts are stable for over 2 months. The others change due
to servers being added and removed, and IP assignments changing over time.
This indicates that we can trade coverage for politeness by reusing the results
of a horizontal scan for multiple application-layer scans. This slowly decreases
coverage over time, but minimizes the number of horizontal scans needed.

The results show that the 80/tcp localized scans find from 4.1% up to 57.5%
of live hosts on the targeted ranges, well above the 2.6% Internet average. This
happens because most seeds are located on cloud hosting providers, which are
being abused to install malicious servers. Thus, localized scans focus on host-
ing services that house significantly more web servers than other residential or
enterprise networks.

5.6.4 HTTP scanning

Table 5.4 summarizes our HTTP scans, which probe the set of live hosts found
by the horizontal scans, identifying malicious servers matching a fingerprint. The
left part of the table shows the scan configuration: the scan date, the target port,
the fingerprint used, the number of hosts scanned, the horizontal scan that found
them (HID), and the number of scanners used (SC). We have used CyberProbe
to perform 22 scans using 14 fingerprints. Note that we have yet to scan for the
remaining fingerprints.

The middle part of Table 5.4 shows the results: the scan duration; the response
rate (Resp.), i.e., the percentage of targets that replied to the probe; the number of
malicious servers found; the number of malicious servers found previously known
to us, i.e., seeds and servers found by a prior scan for the same family; and the
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number of found servers previously unknown. CyberProbe takes on average
14 hours to perform an Internet-wide HTTP scan using 4 scanners and 24 hours
using 3 scanners.

The results show that the 22 scans identified 194 servers, of which 151 are
unique. Starting from 15 seeds CyberProbe identified 151 unique malicious
servers, achieving a 10x amplification factor. Of the 22 scans, 91% (20) find
previously unknown malicious servers, the exception being two localized scans
for winwebsec and blackrev. The 11 localized scans find 66 servers (34 new), an
average of 6 servers found per scan. The 11 Internet-wide scans find 128 servers
(72 new), an average of 11.6 servers found per scan. While Internet-wide scans
find more servers per scan, if we normalize by the number of targets scanned,
localized scans find an abnormally high number of malicious servers. This verifies
our provider locality hypothesis: cybercriminals are installing multiple servers on
the same providers. Once they establish a relationship with a hosting provider
they are likely to reuse it, minimizing the effort for locating new providers, learn
their procedure to install new servers, and create fake identities for registration
(e.g., Paypal accounts).

Coverage. The right part of Table 5.4 shows the number of servers found by
CyberProbe that were already known to 4 popular anti-malware cloud services:
VirusTotal (VT) [25], URLQuery (UQ) [157], Malware Domain List (MD) [156],
and VxVault (VV) [183]. All these cloud services use crowd-sourcing to collect
potentially malicious executables and URLs. Their coverage depends on the
number and volume of their contributors. Some of them have infrastructures to
automatically visit submitted URLs (VirusTotal and URLQuery) and execute the
submitted malware to collect behavioral information (VirusTotal). The collected
information is dumped into databases and public interfaces are provided to query
them. As far as we know, Malware Domain List and VxVault follow a similar
process to populate their databases from submissions, but the process is manually
performed by volunteers. We select these specific databases because they are
popular and allow querying by IP address, while other public databases, e.g.,
Google Safe Browsing [37], only enable URL queries.

The best coverage is achieved by VirusTotal, which knows 25.7% of the servers
found by CyberProbe (50/194), followed by URL Query with 15.5% (30/194).
Malware Domain List and VxVault only know one of the servers each, an abysmal
1.1%. Overall, CyberProbe finds 4 times more malicious servers than the best
of these services. The best coverage among those 4 services is achieved by those
using automatic processing (VirusTotal and URLQuery). Although those 2 ser-
vices have huge URL and malware collections, they still achieve limited coverage.
Those services could be combined with our active probing approach so that when
they discover new seed servers and families, fingerprints are automatically gen-
erated and scanned to identify other family servers. This would significantly
increase their coverage and bring them closer to Internet scale.
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Type Start Date Port Fingerprint Targets SC Rate(pps) Time Found
R 2013-03-19 16471 zeroaccess 40,448 1 10 1.2h 55 (0.13%)
I 2013-05-03 16471 zeroaccess 2,612,160,768 4 50,000 3.6h 7,884 (0.0003%)

Table 5.5: C&C UDP scanning results.

Our results show that CyberProbe achieves 4 times better coverage than
current approaches for identifying some malicious server families. However, there
exist some implementation and deployment trade-offs that limit CyberProbe’s
coverage, which could be even higher. For example, we reuse the results of hori-
zontal scans over time to minimize the number of horizontal scans.

In particular, scans 12–21 target the live hosts found by horizontal scan 12 in
Table 5.3. As expected, the response rate of these HTTP scans decreases over time
as those results become stale. However, we find that the response rate decreases
slowly, from 75% to 70% 3 weeks later. Scans 19–20 show a lower response
rate because they include 2 instances that (unaware to us) were rate-limited by
the provider. Removing the instances from that provider the response rate was
70% for scans 19–20. This slow decrease justifies the trade-off of coverage for
politeness. However, in other situations it may be possible or better to perform
more aggressive scanning. We further discuss scan completeness in Section 5.7.

False positives. The majority of the fingerprints do not produce false posi-
tives. However, the bh2-adobe fingerprint, which captures a fake Adobe webpage
(further explained in the next section) produces one false positive. It corresponds
to a web server with a page that contains license keys for popular software from
Adobe. The authors seem to have copied parts of the Adobe webpage that are
part of our signature. We have not verified if the license keys work.

5.6.5 UDP scans.

One of the fingerprints produced by CyberProbe was for the UDP-based P2P
protocol used by the ZeroAccess botnet.

According to an analysis by Sophos [31], this P2P protocol has two types of
peers: remotely reachable supernodes with public IP addresses and normal nodes
behind NATs. There are two distinct ZeroAccess botnets, each using two ports
for the P2P C&C (for 32-bit and 64-bit infected hosts). The executed malware
was from one of the 32-bit botnets operating on port 16471/udp. The fingerprint
captures a getL command in which a peer requests from a supernode the list of
other supernodes it knows about, and the corresponding retL response where the
supernode returns a subset of its peers.

Table 5.5 summarizes the UDP scans. A localized-restricted scan on 40,488
IPs belonging to a residential US provider was first used to test the fingerprint.
It identified 55 supernodes, a response rate of 0.13%. A later Internet-wide scan
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Operation Finger Seeds Servers Prov. Provider
prints Locality

bestav 3 4 23 7 3.3

bh2-adobe 1 1 13 7 1.8

bh2-ngen 1 1 2 2 1.0

blackrev 1 1 2 2 1.0

clickpayz 2 2 51 6 8.5

doubleighty 1 1 18 9 2.0

kovter 2 2 9 4 2.2

ironsource 1 1 7 4 1.7

optinstaller 1 1 18 2 9.0

soft196 1 1 8 4 2.0

TOTAL 14 15 151 47 3.2 (avg.)

Table 5.6: Server operations summary.

found 7,884 supernodes (0.0003% response rate). Since the response comprises a
list of advertised supernodes, we extract their addresses from the responses and
compute their union across all 7,884 responses. There were 15,943 supernodes
advertised at the time of the Internet-wide scan. Of those, 6,257 (39%) were
found by our scan and 9,686 (61%) were not reachable. The unreachable hosts
could have been cleaned, be offline, or have changed IP address (e.g., mobile
devices, DHCP). Our scan also finds 1,627 supernodes alive but not advertised.
This could be due to supernodes only responding with a partial list of peers and
due to nodes that have changed IP since advertised. One day after the Internet-
wide scan only 19% of the 15,943 advertised supernodes were alive. This high
variability has previously been observed to make it easy to overestimate the size
of a botnet using IP addresses [182]. However, the speed of active probing makes
IP variability a smaller issue, enabling an easy and quite accurate method for
estimating the size of P2P botnets.

5.6.6 Server Operations

Table 5.6 summarizes the 10 server operations analyzed. It shows the number of
fingerprints from the operation used in the scans, the seeds used to generate the
fingerprints, the number of unique servers found, the number of providers hosting
the servers found, and the ratio of servers per provider of the operation. Overall,
these operations host an average of 3.2 servers per provider. The remainder of
this section details selected operations.

BestAV. Best AV is an affiliate pay-per-install program that has been operating
since at least August 2010 distributing the winwebsec family, which encompasses
multiple fake AV brands [198]. Nowadays, BestAV manages 3 programs: the
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winwebsec fake antivirus, the Urausy ransomware, and another unknown fam-
ily [199]. We have 3 fingerprints related to the BestAV operation. Two of the
fingerprints were generated by running winwebsec malware. They capture C&C
servers (winwebsec) and payment servers (bestav-pay). The Internet-wide scans
reveal 16 payment servers and 11 C&C servers. There is strong provider locality as
they use 4 cloud hosting providers for the 27 servers. Provider A hosts 6 payment
and 5 C&C servers, provider B 9 payment and 4 C&C servers, provider C 2 C&C
servers, and provider D the remaining payment server. The 3 providers used for
payment servers provide only dedicated server hosting, which indicates that the
managers do not want external services colocated with their payment infrastruc-
ture. The third fingerprint captures web servers used by the affiliates for checking
statistics and collecting their installers. We manually generated this fingerprint
after reading an external analysis, which identified 2 live web servers [198]. One of
them was alive and we use it as seed server. An Internet-wide scan reveals a sec-
ond server for the affiliates that we have not seen mentioned anywhere else. This
server does not show any domain associated on different passive DNS databases,
so we believe it is kept as backup in case the main one is taken offline.

Blackhole2-adobe. The bh2-adobe fingerprint captures a malware distribu-
tion operation through drive-by downloads that has been ongoing since at least
October 2012 [200]. This operation configures their Blackhole 2 exploit servers to
redirect users to a fake Adobe webpage if exploitation fails, which prompts the
user to install a malicious Flash player update. The webpage has been copied
from Adobe but resides on a different resource. Our fingerprint captures that an
Adobe server will reply to that resource with a 404 error, but the exploit servers
will successfully return an Adobe download page. Our Internet-wide scan on July
6 found 10 live servers, all in cloud hosting services. This supports recent results
that the majority of exploit servers are abusing cloud hosting services [44]. Of
the 10 servers, 3 were already known to VirusTotal. Another 2 were identified by
VirusTotal four days later, and a third one 13 days after CyberProbe detected
it. This shows how CyberProbe can find servers earlier than other approaches.

Blackhole2-ngen. The bh2-ngen fingerprint captures another drive-by down-
load operation, distinguishable because their URLs contain the /ngen/ directory.
The Internet-wide scan reveals only 2 servers. To verify that CyberProbe does
not miss servers we examine the URLQuery database. It contains 10 exploit
servers with the /ngen/ string since October 2012. Since then, the database con-
tains at most three servers operating on the same period of time. None of those
10 servers are located in known hosting providers, which makes us think they
are using their own hosting. The new server CyberProbe found on July 7 is
still not in URLQuery. It is the only server hosted on a known dedicated server
hosting provider. We hypothesize it is either a test server or has not yet been set
to receive traffic.
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Doubleighty. The doubleighty family uses an unknown exploit server with a
fixed resource in the landing URL: /forum/links/column.php. CyberProbe
identifies 18 distinct servers in 3 localized scans with strong provider locality as
two cloud hosting providers host 61% of the servers. After the March 3 scan, we
used a honeyclient to visit the 9 new servers found. Seven of them exploited the
honeyclient but two did not. We set the honeyclient to periodically visit those
2 servers. One month later (April 4) one of them started distributing malware.
This shows that the server was installed much earlier than it started being used.
It also shows that active probing can sometimes identify stand-by servers, before
they exhibit their malicious behavior.

Kovter. Kovter is a ransomware family that blocks the infected computer and
displays a police warning on the screen telling the user it needs to pay a fine to
have it unlocked.

CyberProbe produced two fingerprints for different C&C messages used by
the malware. We performed one localized scan using the kovter-links fingerprint
that found 2 servers and an Internet-wide scan 3 months later using the newer
kovter-pixel fingerprint that found 7. Thus, the C&C infrastructure has a high
level of redundancy. One of the servers appears in both scans so it has been alive
for at least 3 months. It is located in a German cloud hosting provider. Overall,
the 8 distinct servers are distributed among 4 cloud hosting providers.

Clickpayz Clickpayz1 is an online service that sells clicks. Quoting them:
“clickPAYZ has a network of search sites with 10s of millions of people searching
for everything under the sun”. Some files in our malware datasets send clicks to
their servers and the two fingerprints produced by CyberProbe seem to corre-
spond to traffic sent by two different affiliates. The 39 unique servers identified by
both fingerprints are click redirectors belonging to Clickpayz. They are located
on 6 cloud hosting providers. Clickpayz managers are either unaware that their
affiliates send them clicks via files flagged as malicious by different antivirus, or
simply do not care. However, their claim of having tens of millions of people
searching their sites is dubious and their site only provides an email address as
contact information, typically a sign of dark objectives.

5.7 Discussion

5.7.1 Ethical Considerations

Internet scanning has been carried out many times for different research goals [98,
99, 101, 100, 104]. Still, the unsolicited nature of the probes makes some targets
consider it offensive. We take ethical considerations seriously in our study. For

1https://www.clickpayz.com/
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our horizontal scanning, we follow the recommendations of prior work, notably
those by Leonard and Loguinov [101] who study how to perform maximally polite
horizontal scans. We adopt their proposals of mixing the scanner IP addresses,
setting up forward and backward DNS records for the scanners, running a web
server on the scanners with a page explaining that the probing is part of a research
project, and removing from the scan whitelist the ranges of owners that complain
about our probing and are willing to share their IP ranges. Overall, we have
removed from the whitelist 106K IP addresses. In addition, we limit the probing
rate of our horizontal scanners to 60,000pps, well below their maximum rate. We
also manually vet the generated fingerprints before scanning to make sure they
do not contain attacks and will not compromise any host. Furthermore, we work
with our system administrators to minimize the impact on the local network (e.g.,
bypass the firewall / IDS) and to quickly answer any complaints.

No prior literature details how to perform application-layer probing of ma-
licious servers. Our HTTP probing is not malicious, it simply sends a request,
which we have manually vetted first, and collects a response from a target server.
However, our requests mimic those of malicious families, and often request in-
existent resources from web servers. Thus, they may be considered suspicious
or malicious by server owners, or may trigger IDSes loosely configured to match
traffic on both directions. Overall, out of 11 VMs that we use for HTTP probing,
2 of them got suspended for “malicious” behavior. We did not get a warning from
those providers, but found out when trying to access the instances. In addition,
we received 3 emails warning us that our VMs may have been compromised. The
communications from the providers and those received by the system adminis-
trators of our institutions show that the majority of the complaints come from
web honeypots that do not advertise their IP addresses and consider any received
traffic malicious. A less frequent reason are owners thinking our scanner hosts
have been infected or are attacking them. Similar to the horizontal scanning,
when the providers let us know their IP ranges, we avoid further probing.

Finally, it is worth noting that our scanning does not collect and publicize
any sensitive information on remote networks.

5.7.2 Future Improvements

Completeness. Our current implementation is not guaranteed to find all servers
forming the infrastructure of a family. There are two reasons for this. First, there
are some families for which we cannot generate a fingerprint (e.g., their traffic
cannot be replayed) or for which we may only be able to generate fingerprints
for some of the server types they use (e.g., for the C&C server but not for their
web servers). Second, our implementation has some limitations that limit our
coverage. In particular, we have limited scanning capacity and are not able to
run all fingerprints for a family simultaneously. In addition, we reuse the results
of horizontal scans. This makes our probing more polite but reduces coverage
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slowly over time.

Complex protocol semantics. One limitation of our fingerprint generation
approach is that a replayed request may fail to incite a response from a remote
server, e.g., if a field in the request should be a checksum of the sender’s IP
address or if the request is encrypted using the IP address as initialization vector.
Such semantic information cannot be easily obtained from the network traffic,
but prior work extracts it from a binary that implements the protocol [201, 202].
For cases where a binary is available, e.g., with malware, we plan to integrate
binary analysis techniques into our approach.

Shared hosting. Some types of web hosting such as shared hosting and content
delivery networks (CDNs) involve installing multiple domains on the same web
server under the same IP. Here, the web server requires the presence of a domain
name in the Host header to route the request, as two domains on the same
server may define the same resource (e.g,. index.html). This is problematic
for our scanning as we do not know the domains hosted on each probed IP
address. However, malicious servers rarely use shared hosting services because
those services are managed, i.e., the web server owner installs the content for the
clients, which is problematic if the content is C&C software or an exploit kit.
We could leverage passive DNS databases to identify domains hosted on an IP
address to be probed. Some challenges that we foresee are the current limited
coverage of such databases and the large amount of queries needed to complete
a scan.

Making the probes identifiable to selected parties. Whenever we get a
complaint on our probing we ask the reporters for the IP ranges they own and
we remove them from the whitelist. However, some reporters may not want to
disclose their IP ranges, e.g., if they run web honeypots whose addresses should
remain secret. For those cases, we could embed a secret in our probes and disclose
it to selected parties. For example, we could fix the secret used to compute the
sequence number of our TCP probes and reveal it to reporters so that they can
check if a received probe was sent by CyberProbe. Whenever the secret is
updated we would need to notify all reporters.

5.8 Conclusion

In this paper, we have proposed a novel active probing approach for detecting
malicious servers and compromised hosts that listen for (and react to) incoming
network requests. Our active probing approach sends probes to remote hosts and
examines their responses, determining whether the remote hosts are malicious
or not. Compared with existing defenses, it is fast, cheap, easy to deploy, and
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achieves Internet scale. It identifies different malicious server types such as C&C
servers, exploit servers, payment servers, and click redirectors, as well as malware
that listens for incoming traffic such as P2P bots.

We have implemented our active probing approach in a tool called Cyber-
Probe, which implements a novel adversarial fingerprint generation technique,
and 3 scanners. We have used CyberProbe to build fingerprints for 13 mali-
cious families. Using those fingerprints, CyberProbe identifies 151 malicious
servers and 7,881 P2P bots through 24 localized and Internet-wide scans. Of
those servers 75% are unknown to 4 databases of malicious servers, indicating
that for some families CyberProbe can achieve up to 4 times better coverage
than existing techniques. Our results also reveal an important provider local-
ity property: cybercriminals host an average of 3.2 servers on the same hosting
provider to amortize the cost of setting up a relationship with a provider.
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6
RevProbe: Detecting Silent Reverse Proxies in

Malicious Server Infrastructures

6.1 Preamble

In this chapter we reproduce the content of the paper ”RevProbe: Detecting
Silent Reverse Proxies in Malicious Server Infrastructures“. This work presents
a tool codenamed RevProbe that by using actibe probing techniques detects
silent reverse proxies. At the time of the writing this work has been submitted
to NDSS 2016, Antonio Nappa has been the leading author of this paper.

6.2 Introduction

Attackers are constantly looking for mechanisms to protect their server infras-
tructure. A popular approach is to introduce indirection by adding intermediate
layers of servers that simply forward traffic between the clients (e.g., bots, victims)
and the final servers (e.g., C&C, exploit servers). Those intermediate servers are
most exposed and hide the final servers that attackers closely manage and that
store the most sensitive data. They can be hosted on infected machines and cheap
cloud VMs and thus are easy to replace. And, they can distribute traffic across
multiple final servers, making the malicious server infrastructure more resilient
to take downs.

Different types of intermediate servers can be used to introduce indirection in
malicious infrastructures. Botnet operators leverage publicly reachable comput-
ers in the botnet to serve as proxies [203, 204], HTTP redirectors are widely used
in drive-by downloads [57], and traffic delivery systems (TDSes) aggregate traffic
towards exploit servers [155]. Another type of intermediate servers are reverse
proxies, which are set up by Web service administrators to interpose the commu-
nication between clients and the Web service servers. They differ from forward
and ISP proxies [106] in that they are specific to one Web service and act as
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the Web service endpoints. Reverse proxies are used in benign Web services and
content delivery networks (CDNs) for load balancing traffic across servers [205],
caching content [205], and filtering attacks [206].

An instance of reverse proxies are silent reverse proxies that do not reveal
their proxy role. Silent reverse proxies hide the existence of other Web servers
behind them. There have been reports of silent reverse proxies being used in
malicious server infrastructures [207], but their prevalence is yet unknown. Cur-
rently, there is no effective tool to identify silent reverse proxies. While some
tools exist (e.g., [112, 109, 108]) they fail to detect silent reverse proxies in com-
mon configurations. Furthermore, no tool details the hierarchy of servers hiding
behind a silent reverse proxy, e.g., the number of servers behind a load balancer.

In this work we present RevProbe, a state-of-the-art tool for automatically
detecting silent reverse proxies and identifying the server infrastructure behind
them. RevProbe uses an active probing approach that sends requests to a
remote target IP address and analyzes the responses for discrepancies and leaks
indicating that the IP address does not correspond to a single server but to a
reverse proxy with other servers behind. When it detects a reverse proxy, it
outputs a reverse proxy tree capturing the hierarchy of servers it detected behind
the reverse proxy. When possible, the identified servers are tagged with their
software package, version, and IP address.

We design novel techniques for detecting silent reverse proxies based on dis-
crepancies they introduce in the traffic such as extracting time sequences from
the HTTP Date header and using the structure of default error pages to identify
discrepancies in Web server software. We have also performed a comprehensive
study of existing tools for reverse proxy detection (and Web server fingerprinting)
and the techniques they use. We incorporate those techniques as well as our novel
techniques into RevProbe.

RevProbe can be used by security analysts for taking down malicious infras-
tructures, counterintelligence, and attribution. It can be combined with recent
active probing tools for detecting malicious servers [208, 87] to determine if de-
tected servers are reverse proxies or final servers. RevProbe has also important
applications on benign server infrastructures. It can be used during penetration
testing to identify vulnerable servers hiding behind a reverse proxy and vulner-
abilities introduced by the reverse proxy; for asset management; for auditing
Web application firewall rules; for security compliance testing (as reverse proxies
may be forbidden by the hosting network policy); for measuring and optimizing
performance; and for cloud cartography [209].

We evaluate RevProbe on both controlled configurations and live benign
and malicious websites. To measure its accuracy in comparison with other re-
verse proxy detection tools, we first apply RevProbe and 6 other tools on 36
silent reverse proxy configurations. RevProbe perfectly recovers the reverse
proxy tree in 77% of the configurations, and the presence of a reverse proxy in
the remaining 23% configurations. No other tool is a close competitor. The clos-
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est tool is lbmap [108], which recovers the correct reverse proxy tree in 33% of
the configurations and a reverse proxy in another 17%, but it only detects the
less popular HAProxy [210] and Pound [211] reverse proxies, missing completely
Apache [212] and Nginx [213] acting as reverse proxies.

Then, we use RevProbe to perform the first study on the usage of silent re-
verse proxies in both benign and malicious Web services. We apply RevProbe
on the top 10,000 Alexa domains [186] and 8,512 malicious domains from Mal-
wareDomains [214].

Our results show that 16% of active IPs in malicious Web infrastructures and
20% in benign infrastructures correspond to reverse proxies. The vast majority of
malicious reverse proxies (92%) are silent to hide the existence of servers behind
them, compared to 55% of benign reverse proxies. Reverse proxies are predom-
inantly used to load balance traffic among multiple servers in both malicious
(83%) and benign (87%) infrastructures. The dominant reverse proxy tree (78%
of malicious trees and 86% of benign) is a Web load balancer with 2–6 servers
behind in malicious infrastructures, and up to 30 servers behind in benign in-
frastructures, followed by a reverse proxy with one server behind (17% malicious
trees, 13% benign), but more complex hierarchies also exist.

Contributions:

• We present RevProbe, a state-of-the-art active probing tool for detecting
silent reverse proxies and identifying the server infrastructure hiding behind
them.

• We design novel techniques for detecting reverse proxies based on discrep-
ancies they introduce in the traffic such as extracting time sequences from
the HTTP Date header and using the structure of default error pages to
identify discrepancies in Web server software.

• We perform a comprehensive study of existing tools for reverse proxy detec-
tion (and Web server fingerprinting) and the techniques they use. We in-
corporate those techniques as well as our novel techniques into RevProbe.

• We compare the accuracy of RevProbe with 6 other reverse proxy detec-
tion tools on 36 silent reverse proxy configurations, showing that RevProbe
outperforms existing tools.

• We apply RevProbe to perform the first study on the use of silent reverse
proxies in malicious (and benign) infrastructures. Our results shows that
16% of malicious active IPs correspond to reverse proxies, that 92% of those
are silent, and that they are predominantly used to load balance connections
across multiple servers.
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Figure 6.1: Reverse proxy usage examples.

6.3 Overview and Problem Definition

A proxy interposes on the communication between a client and a server, splitting
the communication into two TCP connections: client to proxy and proxy to
server. A proxy is explicit if it requires the IP address and port of the proxy to
be specified in the client application (e.g., browser) and transparent otherwise.

A reverse proxy is purposefully setup by the owner of a Web service to mediate
the HTTP communication from clients to the Web service servers. Thus, it is
specific to a Web service as opposed to a forward proxy that is often setup in a local
network and mediates communication of local clients to any remote service. It is
also different from an ISP proxy [106], which intercepts all HTTP communication
from ISP clients to any Web service. Reverse proxies are by definition transparent
because they do not require client configuration. They are typically located across
the Internet from the clients and can be hosted in the same subnet as the final
servers as well as in a remote subnet across the Internet.

Reverse proxies are advertised as the service’s endpoints. When a client arrives
at a reverse proxy it looks like it is arriving at the server because the IP address
it uses to contact the service is the IP address of the reverse proxy. If a domain
name is used to advertise the service, the domain will resolve to the IP address of
the reverse proxy. Thus, reverse proxies require the collaboration of the service
owner to be installed.

There exist specialized types of reverse proxies. A Web load balancer (WLB)
is a reverse proxy that load balances requests across multiple servers according to
some policy (e.g., round-robin, least-loaded); a Web application firewall (WAF)
filters requests to remove potential attacks; and a Web reverse cache (WRC)
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accelerates communication by temporarily storing content from the servers re-
sponses, and later serving requests from the cached copy.

A silent reverse proxy tries to hide the presence of servers behind it. It does not
purposefully signal its role as reverse proxy, e.g., by introducing a Via header in
the HTTP response [215], thus hiding the existence of servers behind it. Without
an explicit signal, the silent reverse proxy looks like the server.

Reverse proxies are used in benign Web services and content delivery networks
(CDNs). But, (silent) reverse proxies can also be used in malicious infrastructures
for hiding the final servers. In malicious infrastructures, the reverse proxies are the
most exposed components because their IP addresses are visible, but their value
is lower compared to final servers as they may not store any essential information
and simply forward traffic. If the reverse proxy is taken down, little sensitive
information may be obtained by the investigators. The attackers can replace
the reverse proxy with another one and use the early warning to move their
final servers. In addition, reverse proxies can use cheaper hosting (e.g., infected
machines, cloud VMs) while attackers can make a larger investment to protect
the final servers (e.g., bullet-proof hosting).

Figure 6.1 shows two usage scenarios for reverse proxies. In Figure 6.1a one
reverse proxy is used as a WLB to distribute connections across 3 final servers on
the same local network. Figure 6.1b captures a more robust server infrastructure
with a line of reverse proxies and WLBs forwarding traffic to final servers that
may be hosted somewhere else on the Internet. Some reports (e.g., [207]) link
this kind of infrastructure to exploitation-as-a-service models [28] where the final
servers would be exploit servers and the reverse proxies would hide them from
the victims.

There exists other middleware that malicious Web infrastructures can use for
introducing indirection and load balancing traffic across malicious servers. For
example, drive-by downloads heavily rely on HTTP redirectors to route traffic
to exploit servers [57]. A special case of HTTP redirectors are traffic delivery
systems (TDSes) that use a number of configurable rules to decide where to
route requests [155]. HTTP redirectors (and TDSes) differ from reverse proxies
in that once the redirection happens the rest of the communication does not go
through the redirector. They are also not silent as their IP address is visible to
a client.

6.3.1 Problem Definition

In this work we develop a tool for detecting silent reverse proxies. We consider two
alternative definitions of our problem: strict (simpler) and generalized (harder).

Strict problem definition. Given the IP address and port of a remote Web
server 〈ip, port〉, output true if 〈ip, port〉 corresponds to a reverse proxy, false
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Figure 6.2: Reverse proxy tree example.

otherwise. This definition only identifies the existence of a reverse proxy; it does
not attempt to identify the server infrastructure hiding behind it.

Generalized problem definition. Given the IP address and port of a remote
Web server 〈ip, port〉, determine the server infrastructure behind it. The goal
is to output a reverse proxy tree where each node corresponds to a Web server.
The root node corresponds to the input pair 〈ip, port〉, internal nodes correspond
to other reverse proxies, and leaf nodes correspond to final servers. A node
with children is a reverse proxy and a node with multiple children is a Web
load balancer. Each node is annotated with its type: reverse proxy (RP), Web
load balancer (WLB), or final Web server (WS). A node can have 3 optional
attributes: Web server software (e.g., Apache, Nginx), Web server version (e.g.,
2.2.3 for Apache), and IP address.

Figure 6.2 shows an example reverse proxy tree. It shows that the target IP
address (8.8.8.8) corresponds to a WLB that load balances traffic across 3 servers
in layer 1. Of those, two are final servers and another is a reverse proxy to another
final server at layer 2. Some nodes have the optional attributes software package,
software version, and IP address.

The goal of RevProbe is identifying whether a given 〈ip, port〉 corresponds
to a reverse proxy (strict definition) and, if so, recover the reverse proxy tree
(generalized definition). The goal is not to recover the optional node attributes
(software package, version, IP address). However, RevProbe will annotate the
tree nodes with software, version, and IP address if it happens to recover that
information during its processing.
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Both problem definitions take as input an IP address. If the input is instead
a domain, our approach first resolves the domain into a list of IP addresses. If
the input is a URL, it follows all HTTP redirections and then resolves the final
domain in the redirection chain to obtain a list of IP addresses. Our reverse proxy
detection is then applied separately for each IP address.

A related problem is Web server fingerprinting [115, 116, 117] (WSF), which
aims to recover the software package and version running at a given 〈ip, port〉
endpoint. Current WSF approaches assume the endpoint corresponds to a single
server, which is not true with reverse proxies. For example, existing WSF tools
will incorrectly label endpoints that correspond to Web load balancers where the
received responses may come from multiple servers potentially running different
software.

6.3.2 Approach Overview

We assume only black box access is available to the remote Web service identified
by 〈ip, port〉. The code of the Web service is not available in any form. Thus,
we use active probing techniques that send requests to 〈ip, port〉, collect the re-
sponses, and infer from those responses the presence of a reverse proxy and the
server infrastructure behind it. RevProbe acts as a client that interacts with
the Web service over the network.

There exist two general approaches to identify proxies through active probing:
timing-based and discrepancy-based. Timing-based techniques leverage the prop-
erty that every reverse proxy introduces an additional hop in the communication,
which in turn introduces unnatural additional latency from the client’s perspec-
tive [111]. Discrepancy-based techniques focus on identifying discrepancies that
the proxies may introduce in the traffic [106].

We use (mostly) a discrepancy-based approach because timing-based approaches
cannot identify multiple servers hiding behind the reverse proxy, e.g., a WLB.
They also have problems detecting reverse proxies when the delay they introduce
is too small to be detectable across the Internet, e.g., when the reverse proxy sits
in the same subnet as the final server.

In contrast, discrepancy-based techniques can identify multiple servers behind
a reverse proxy. However, in some situations they may miss some servers. For
example, in the presence of a WLB that balances traffic across multiple servers, if
some of those final servers are configured identically and perfectly synchronized,
RevProbe may not be able to distinguish them and underestimate the number
of final servers. With discrepancy-based approaches, the more servers hide behind
a reverse proxy the easier the strict problem definition gets, since each new server
may introduce discrepancies, but the generalized problem definition gets harder
as more information needs to be recovered.

It is worth noting that some of our detection module (e.g., Max-Forwards and
phpinfo, detailed in Section 6.5) are not based on discrepancies and thus can also
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Reverse Proxy Detection
Explicit Silent WSF

Tool RP WLB WAF RP WLB WAF Exp. Imp. Classes # Req.
Our tool X X - X X - X X * 45
Halberd [112] - X - - X - X - * 25,570
Htrosbif [109] - X - - X - X X 75 20
http trace.nasl [107] X - - - - - - - - 1
lbmap [108] X X X X X X X X 6 37
TLHS [110] X - - X - - - - - 3
WAFW00f [114] - - X - - X - - - 13
ErrorMint [122] - - - - - - X - * 9
HMAP [120] - - - - - - X X 28 178
HTTPRecon [117] - - - - - - X X 460 9
HTTPrint [115] - - - - - - X X 118 22
http version.nasl [216] - - - - - - X - * 2
nikto.nasl [217] - - - - - - X X 1,250 6,297
Nmap [121] - - - - - - X - * 1

Table 6.1: Summary of existing tools for reverse proxy detection and Web server
fingerprinting (WSF).

identify difficult configurations such as a reverse proxy running the same software
as the final server behind.

6.4 State of the Art

We split the state of the art discussion into related work (Section 6.4.1) and
existing tools for reverse proxy detection, also part of the related work but better
described together (Section 6.4.2).

6.4.1 Related Work

Weaver et al. [106] propose a technique to detect ISP and forward proxies by
installing an application in client hosts and have it communicate with a Web
server under their control. Discrepancies between the response sent by their
server and the response received by the client application indicate the presence
of a proxy. Our work focuses instead on detecting reverse proxies that serve as
endpoints of a Web service. In this scenario we do not control the server the
client connects to.

In his M.Sc. thesis, Weant [111] proposes to detect reverse proxies through
timing analysis of TCP and HTTP round trip times. Timing-based approaches
focus on the strict problem definition and cannot identify multiple servers hiding
behind the reverse proxy. They also fail to detect reverse proxies when the delay
they introduce is too small to be detectable across the Internet. Furthermore,
Weant evaluates his technique on a single ground truth configuration and does not
measure the prevalence of reverse proxies in malicious and benign infrastructures.
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Web server fingerprinting. A number of tools exist to fingerprint the pro-
gram and version run by a remote Web server [115, 116, 117, 118, 119, 120].
Among these, some tools like Nmap [121] or ErrorMint [122] fingerprint the pro-
gram version exclusively by examining explicit program version information pro-
vided by the server, e.g., in the Server header and error pages. Other tools like
HMAP [120], HTTPPrint [115], and HTTPRecon [117] use fingerprints that
capture differences between how different Web server versions construct their re-
sponses. These type of fingerprints do not rely on the program version information
explicitly provided by the server.

Vulnerability scanners such as Nessus [78] and OpenVAS [218] detect vul-
nerabilities in a variety of software, including Web servers. They first finger-
print the software running at a given endpoint and then look up those soft-
ware versions in vulnerability databases. Both Nessus and OpenVAS run NASL
scripts [219] and there exist NASL scripts for Web server fingerprinting such as
http version.nasl [216] and nikto.nasl [217].

A common limitation of all Web server fingerprinting (WSF) tools is that they
assume the 〈ip, port〉 endpoint to be fingerprinted corresponds to a single Web
server, which is not true with reverse proxies. When faced with a reverse proxy,
they will often recover the software version of the final server behind the reverse
proxy, but they can be confused if the reverse proxy manipulates the responses, or
acts as a load balancer to servers with different software. One of the conclusions
of this work is that reverse proxy detection and Web server fingerprinting are
best done together.

Automatic fingerprint generation. There exist approaches to automatically
build program version fingerprints [88, 118]. Currently, RevProbe uses manu-
ally generated fingerprints and could benefit from such approaches. Recent work
builds fingerprints for malicious server programs (e.g., C&C, exploit kits) scan-
ning the Internet to locate servers that run them [208, 87]. These tools cannot
distinguish between reverse proxies and final servers in their results and could
leverage our approach to this end.

6.4.2 Reverse Proxy Detection Tools

Table 6.1 summarizes existing reverse proxy detection tools. For completeness,
it also includes Web server fingerprinting tools described in the previous sec-
tion. The table only includes publicly available tools, commercial tools are not
included. The table is broken into 3 blocks: reverse proxy detection, Web server
fingerprinting (WSF), and number of requests sent by default. Tools with suffix
.nasl are NASL scripts [219] for the Nessus [78] and OpenVAS [218] vulnerability
scanners. All tools take as input a target IP address or domain and focus on the
strict problem definition. They do not output a reverse proxy tree or recover the
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number of servers behind a WLB, but in some cases they may identify a reverse
proxy and a final server behind.

The reverse proxy detection block distinguishes between detection of explicit
and silent reverse proxies and also between generic reverse proxy detection (RP),
Web load balancer detection (WLB) and Web application firewall (WAF) detec-
tion.

The WSF block captures if the software information comes exclusively from
explicit version information provided by the Web server (e.g., Server header and
versions in error pages) or if it is detected without trusting the explicit version
information (e.g., using fingerprints). The final column in this block captures
the number of classes (i.e., program versions) the tool can identify. An asterisk
indicates the tool has no predefined classes, but rather outputs any explicit pro-
gram version information. The rightmost column captures the average number
of requests that the tool sends in default configuration to a target IP.

Next we detail each of the tools, the detection approaches they use, and the
comparison with RevProbe.

Halberd. This tool focuses exclusively on detecting Web load balancers. It
sends the same request for a period of 15 seconds to the target IP. Differences
in some response headers (e.g., E-Tag, Server) indicate a load balancer. On our
tests, it sends on average 25,570 requests, the most of all tools. RevProbe
incorporates this technique but it also adds a novel second technique, based on
extracting time sequences from the HTTP Date header, to detect WLBs and
estimate the number of servers behind.

Htrosbif and lbmap. These tools are similar. They send a number (20 and 37
respectively) of abnormal requests to the target trying to force a response from
a reverse proxy. They use a database of signatures on the responses to identify
some specific reverse proxy software (i.e., HAProxy, Pound, Vanquish). They
differ in the database of requests and signatures. Both fail to detect generic Web
server software (e.g., Apache, Nginx) running as reverse proxy. RevProbe also
incorporates a module for forcing proxy responses, but uses a novel method to
extract fine-grained information from the error pages that also works with Apache
and Nginx.

TLHS. Gregoire [110] presents the HTTP traceroute tool (TLHS), which lever-
ages the Max-Forwards HTTP header that limits the maximum number of times a
request is forwarded. RevProbe also incorporates this technique, but it cannot
be used in isolation because popular reverse proxy software (e.g., Nginx) ignores
the header. In our experiments, it only works well with Apache reverse proxies.
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Figure 6.3: Approach overview.

http trace.nasl. This NASL plugin only detects reverse proxies by examining
the HTTP Via header, thus it cannot detect silent reverse proxies. RevProbe
also includes an explicit RP detection module for completeness, but its goal is
detecting silent reverse proxies.

WAFW00f. This tool exclusively detects Web application firewalls. It sends a
normal request and a malicious request to the same URL. Discrepancies between
both responses flag a WAF. This tool incorrectly flags any RP as a WAF and
produces false negatives if the WAF does not return an error, but rather a 200
OK response with some error message in the body. Currently, RevProbe does
not differentiate WAFs from other RPs because their fine-grained classification
requires sending attacks, or at least attack-resembling requests to third parties,
which can be considered offensive.

In addition to the methods used by the tools above, RevProbe also im-
plements two novel detection techniques, and provides another module that im-
plements a previously known technique not implemented by these tools (i.e.,
phpinfo [220]).

6.5 Approach

Figure 6.3 provides an overview of our approach. The preparation module first
resolves domains and URLs into final IPs. For each IP address, RevProbe
examines whether it corresponds to a reverse proxy by sending probes and exam-
ining the responses. If it finds a reverse proxy, it outputs a reverse proxy tree for
that IP address.

For each IP address, RevProbe runs a number of detection modules. Each
module may send requests to the remote IP or simply examine the responses to
requests sent by other modules. Each module outputs a, possibly partial, reverse
proxy tree. Those trees are combined at the end into a reverse proxy tree for
each target IP address. The remainder of this section details the modules in
Figure 6.3.
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6.5.1 Preparation

A user may want to run RevProbe on a DNS domain or URL, rather than an
IP address. The preparation module obtains a set of IP addresses from those
domains and URLs and feeds them to RevProbe. Then RevProbe examines
each IP address independently.

For domains, the preparation module resolves the domain and extracts the list
of IP addresses it points to. For URLs, the preparation module fetches the URL
and follows all HTTP redirections the URL may produce. From the final URL
in the redirection chain, it extracts the domain name and resolves it as above.

After the preparation step, any HTTP connection from RevProbe uses the
IP address to connect (i.e., without resolving the domain again) and provides the
domain name if known in the Host header, otherwise the IP address.

6.5.2 Web Load Balancer Detection

The goal of the WLB detector is to detect the presence of a WLB and to provide
a lower bound in the number of servers that hide behind it. The WLB detector
uses three different tests: same request, datetime sequences, and load balancer
cookie. These tests are detailed next.

Same request test. The first test is to send the same request multiple times to
a given target IP address, monitoring for changes in the responses (e.g., different
HTTP Server header values), which may indicate the existence of multiple Web
servers and thus the presence of a WLB that forwards requests across them. The
challenge in building this test is that not all changes in the responses indicate the
presence of a WLB as some parts of the response (e.g., some headers, content)
are volatile and change regardless of the request being kept constant, without
this indicating the presence of a WLB. Thus, the test checks for differences in
the responses related to a server’s configuration. As a consequence, it will fail to
detect a WLB, or provide only a lower bound on the real number of servers, if the
servers behind the WLB are configured identically, e.g., run the same Web server
software version, have the same configuration, and deliver the same content. In
practice, running a perfectly homogeneous server infrastructure and updating the
servers’ content simultaneously is challenging and such differences in configuration
manifest often.

The tests sends sequentially the same request n times to the target IP and
collects the sequence of responses {r1, . . . , rn}. It also records the time each
request and response was received. The larger n the more confidence in the test
results, but the noisier the test is. By default, it sends 30 requests.

For each response, it first extracts the features in Table 6.2. The first fea-
ture is the hash of the sequence of header names (without value) in the order
they appear in the response. All other features correspond to the value of an
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Feature Type

Header name hash string

Accept-Ranges string
Allow string
Connection string
Content-Disposition string
Content-Encoding string
Content-Language string
Content-Type string
Date datetime
P3P string
Server string
Status-Line string
Transfer-Encoding string
Upgrade string
X-Powered-By string

Table 6.2: WLB detection module features.

HTTP header. These features have been selected because their content is re-
lated to the server’s configuration. The features do not include headers that
are not standard [215] (except the popular X-Powered-By), volatile headers that
change often (e.g., Set-Cookie), content-related headers (e.g., Content-Length,
Etag, Last-Modified) since the content can be dynamic, caching-related headers
(e.g., Cache-Control), and proxy-related headers (e.g., Via) that are examined in
the explicit detection module (Section 6.5.3). These features can be of 2 types:
string or datetime. This test focuses on the string features, the Date header is
handled by the second test.

The intuition behind the string features is that their value should be deter-
ministic for the same request and same server. Thus, observing different values in
responses to the same request indicates the presence of multiple servers, and thus
a WLB. This test outputs the maximum number of distinct values for a feature
c. If c = 1, no WLB was observed for this test. If c > 1, there is a WLB with
c servers behind it. Note that if the configuration of a server is changed during
the test RevProbe will count the server as two differently-configured servers.
The probability of this event can be minimized by reducing the time between
requests, at the expense of increasing the load of the target IP, or by repeating
the test at a later time.

Datetime sequences test. The second test proposes a novel technique to
extract time sequences from the HTTP Date header of the received responses.
It does not require to send requests, but examines the responses to the same
request test. The motivation behind this test is that timestamps are a good
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Algorithm 2 Datetime sequence identification

Input: response sequence, R = [r1, . . . , rn]
Output: num servers ∈ [1,∞)

1: procedure Datetime–Sequence
2: S = {}
3: for i ∈ [1, n] do
4: currT ime = ri.getDatetime()
5: Found = False
6: for s ∈ S do
7: th = updateThreshold(s, currT ime)
8: if 0 ≤ (currT ime− s.lastT ime()) ≤ th then
9: s.append(currT ime)

10: found = True
11: break
12: end if
13: end for
14: if Found = False then
15: S.newSeq(currT ime)
16: end if
17: end for
18: end procedure

source of information for identifying servers behind a WLB whose clocks are not
synchronized. Multiple interleaved time sequences manifest the presence of a
WLB and the number of servers behind can be approximated by the number of
distinct interleaved sequences observed.

Algorithm 2 describes the datetime sequence identification algorithm. It iter-
ates over the sequence of responses (line 3). For each response, it first obtains the
datetime in the Date header (line 4). Then, it checks if the datetime is past, but
within a threshold th of the end of any existing sequence (lines 6–12). If so, it
adds the response to the current sequence (line 8). Otherwise, it creates a new se-
quence for the response (lines 13–14). Note that if the date in the current request
is in the past of the examined sequence, it cannot belong to that sequence as the
Date header should monotonically increase for the same server. The threshold
value th is dynamically updated (line 7) based on the time difference between
this request and the last entry in the sequence that updated the Date header.
The new threshold value is th = d(

∑j
i RTTi) ∗ ce where i is the index of the

last response in the sequence that updated the Date header value, j the index of
the current request, RTTi the round trip time of request-response pair i, and c a
constant factor (by default 2).
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Load balancer cookie test. The third test leverages that some Web load
balancer software introduce cookies in the responses sent by the server for per-
sistence, i.e., to make sure that different HTTP connections of the same Web
session are forwarded by the WLB to the same server. The Set-Cookie header
from each response obtained from the prior test is checked against the subset of
the OWASP cookie database [221]. The OWASP database contains signatures
for the cookies produced by different Web applications, including 5 signatures for
cookies introduced by commercial load balancers such as F5 BIG-IP [222] and
KempLB [223]. This test outputs 1 if no WLB is detected and 2 if a WLB is
detected indicating that at least two final servers are identified behind a WLB.

The WLB detection module outputs a tree with a root WLB node and in
layer 1 the maximum of the number of servers found by the same request, date
sequences, and load balancer cookie tests. If no WLB is found, it outputs a
singleton tree with a root WS node.

6.5.3 Explicit Reverse Proxy Detection

While detecting silent reverse proxies is its main goal, RevProbe also detects
explicit reverse proxies, which announce their presence. The explicit RP mod-
ule does not produce traffic, but examines a number of headers in all responses
received from a target IP.

The Via header must be used by proxies to indicate their presence1 [215]. Each
proxy that forwards an HTTP message (i.e., request or response) must append a
comma-separated entry to the Via header specifying the protocol version of the
message received and the proxy’s hostname (or pseudonym). Some explicit RPs
use the X-Via [224] header instead. The explicit RP module parses the Via and
X-Via headers if they exist to retrieve the list of explicit proxies. In practice,
many reverse proxies are silent; they do not append themselves to the Via header
and strip these headers. This module also examines the following cache-related
headers, useful for detecting caching RPs: X-Served-By [225], X-Cache [225],
X-Cache-Lookup [226], X-Varnish [227], and X-Cache-Hits [225].

This module outputs a tree with a node for each explicit proxy identified, or
a singleton WS node if no RP is found.

6.5.4 Max-Forwards

The Max-Forwards header in an HTTP request can be used to limit the number
of proxies that can forward the request [215]. It is set by the source to a maximum
number of hops. Each proxy must check its value: if the value is zero the proxy
must not forward the request, but must respond as the final recipient; if greater

1The X-Forwarded-For header is analogous but only included in requests to track the client’s
IP address.
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than zero it must decrease it and forward the request with the updated Max-
Forwards value. Max-Forwards is only required to be supported with the TRACE
and OPTIONS methods, but may be supported with other methods such as GET.

This module sends HTTP requests to the target IP each time increasing the
value in the Max-Forwards header, from zero to a maximum number of hops
(by default 3). We compare each response (starting with value 1) with the prior
response. If the two responses have identical values in the string headers in
Table 6.2, no reverse proxy is found and the test exits. If there is a difference, then
a reverse proxy is found, e.g., value zero returns a 400 proxy error and value one
returns 200 OK. In this case, the Max-Forward value is incremented and the test
repeated to check if there may be multiple reverse proxies chained. A limitation
of this technique is that some Web servers such as Nginx [213], HAProxy [210],
and Pound [211], do not support the Max-Forwards header and always forward
the request. Our test uses the GET method as we have experimentally observed
that TRACE is often not supported.

This module outputs a tree with a node for each RP identified, or a singleton
WS node if no RP is found.

6.5.5 Error Pages Database

This section describes the error pages database, which is an auxiliary module
used by other detection modules, rather than a detection module itself.

The HTML error page in an HTTP error response may explicitly leak infor-
mation about the server version and even the server hostname (or IP address).
For example, some default pages for Apache report the Web server version in the
<address> tag. Furthermore, if the server uses the default error page from the
Web server software (rather than a customized error page), the structure of the
error page implicitly leaks the server’s software.

We have built a database of 51 default error pages for popular Web servers.
Each entry in the database is indexed by the hash of the sequence of HTML tag
and attribute names in the error page. Each entry contains information about
the server software the error page corresponds to, and whether some tag in the
HTML content stores version or endpoint information.

Every time an HTTP error response is received by any module, RevProbe
hashes the error page structure and looks up the hash in the database. If found,
it tags the error page with the server software and extracts the explicit version
and endpoint information, if any.

6.5.6 Not Found Module

This module sends a request for a non-existing resource, which triggers a not
found error. The request will typically be forwarded by the RP and answered by
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the final server since only the server knows what content exists. Caching RPs
will not find the content in the cache and forward the request as well.

This module identifies a reverse proxy using two methods. The first method
uses the error page database to extract (explicit or implicit) software information
about the server that returns the error page. Then, it compares this information
with the Server header in the HTTP response. If it finds a discrepancy it flags
a reverse proxy. For example, if the error page contains an <address> tag with
an Apache version, while the Server header corresponds to Nginx, this indicates
the presence of an Nginx RP in front of an Apache server. This method works
because some Web servers like Nginx overwrite the Server header of a response
coming from the final server, even if the HTTP specification mandates they should
not [215]. The second method checks if the returned error page contains an
explicit hostname (or public IP address), which does not correspond to the target
IP. If so, it also flags a reverse proxy and the hostname (or IP address) in the
error page identifies the final server.

This module outputs a tree with a root RP node and one WS node at layer 1
if a RP is found, otherwise a singleton WS node.

6.5.7 Force Proxy Response

A perfectly silent reverse proxy would forward all requests to the final server(s).
In reality, RP implementations will often parse the requests and do some basic
checks on them. Based on those checks they will forward the request, or reply to it
themselves with an error. When an RP is present, most requests will be answered
by the final server, but incorrect requests may be answered by the reverse proxy
itself.

This module sends a number of requests to the target IP. Some of the requests
are normal and the others are formatted to trigger an error from popular Web
servers used as RP. Then, it uses two methods to check for discrepancies between
the responses to both types of requests.

The first method uses a fingerprint on the response to an incorrect request. In
some cases that response is so specific to a particular Web server that it can be
used as a fingerprint for that Web server. RevProbe has such fingerprints for 3
programs that can only act as RP but not as WS: HAProxy [210], Pound [211],
and Varnish [227].

The second method looks for Web server software discrepancies. It compares
the Web server software information extracted from the response to a proper
request, with the same information extracted from the error response to an in-
correct request. For the latter, it leverages the error page database. If it finds a
discrepancy it flags a reverse proxy. This method is similar to the first method
of the not found test in Section 6.5.5. The difference is that here it operates
on software discrepancies found across multiple responses, while in Section 6.5.5
it focuses on discrepancies within the same response (Server header and HTML
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content).
This module outputs a tree with a root RP node and one WS node at layer 1

if a RP is found, otherwise a singleton WS node.

6.5.8 PHPinfo

Web servers that support PHP may have the phpinfo.php file, which administra-
tors may have forgotten to remove. This file executes the phpinfo function [220],
that returns a wealth of data about the server, and pipes this data over the net-
work to the client. The returned data may include the server’s IP address in
the SERVER ADDR field. For each target IP, RevProbe tries to fetch this file
from 4 common paths. If it finds it, then it checks if the SERVER ADDR field
contains a public IP address that differs from the target IP. If so, this reveals the
presence of a reverse proxy, and also deanonymizes the server behind it.

This module outputs a tree with a root RP node and one WS node at layer 1
if a RP is found, otherwise a singleton WS node.

6.5.9 Combiner

The combiner takes as input the possibly partial reverse proxy trees produced
by each of the detection modules and merges them to produce the final tree for
each target IP address. In addition to merging the tree nodes, it annotates the
nodes with the software package, version, and IP information that may have been
recovered by the different tests.

The output of RevProbe is a reverse proxy tree for each target IP that has
been flagged as a RP, as well as the list of target IPs for which no RP has been
found.

6.6 Evaluation

This section evaluates our approach. First, we compare the accuracy of RevProbe
with other prior RP detection tools using 36 silent proxy configurations for which
we have ground truth (Section 6.6.1). Then, we test RevProbe on live web-
sites, namely on the top 10,000 Alexa domains and on 8,512 malicious domains
(Section 6.6.2).

6.6.1 Tool Comparison

To compare the accuracy of RevProbe to other tools, we test them on 36 silent
reverse proxy configurations for which we have ground truth. We test 3 different
reverse proxy trees depicted in Figure 6.4. Type 1 corresponds to a reverse proxy
with one server behind. Type 2 is a WLB that distributes connections to 2 servers.
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Figure 6.4: Server trees used for tool comparison.

Program RP WS Versions

Apache X X 2.2.22, 2.4.7
Nginx X X 1.1.19, 1.6.2
IIS - X 7.5
HAProxy X - 1.4.24
Pound X - 2.6

Table 6.3: Programs used in tool comparison.

Type 3 is a WLB balancing between one final server and a reverse proxy that
hides another final server. For each tree, we test multiple software configurations.
We use 7 versions of 5 programs, summarized in Table 6.3. Apache and Nginx
can operate as final server or reverse proxy, IIS only as final server, and HAProxy
and Pound only as reverse proxies. We configure all RPs and WLBs silently. The
WLBs use a round-robin policy.

Table 6.4 summarizes the results. For each of the 36 configurations, it shows
the type of tree tested, the server versions used at each layer, and the test results
for each tool. For configurations of Type 3 the server used as reverse proxy in
layer 1 is marked with an asterisk. For each tool test result, a Xsymbol means
that the tool perfectly recovered the shape of the reverse proxy tree; wlb that
it detected a WLB at the root node but not the servers behind it; rp that it
detected a RP at the root but not the servers behind it; and a - symbol that it
did not detect a reverse proxy.

RevProbe results. In all 24 configurations of type 1 and 2 RevProbe per-
fectly recovers the reverse proxy tree. In addition, it also recovers the software
package and version of all servers in those trees. Trees of type 3 have mixed
results. In 4 out of 12 configurations for trees of type 3 it recovers the perfect
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T1 Nginx 1.6.2 Apache/2.4.7 X - - - - - -
T1 Nginx 1.6.2 Nginx/1.1.19 X - - - - - -
T1 Nginx 1.6.2 IIS/7.5 X - - - - - -
T1 Apache 2.4.7 Apache/2.2.22 X - - - - rp rp
T1 Apache 2.4.7 Nginx/1.6.2 X - - - - rp rp
T1 Apache 2.4.7 IIS/7.5 X - - - - rp rp
T1 HAProxy 1.4.24 Apache/2.4.7 X - X - X - -
T1 HAProxy 1.4.24 Nginx/1.6.2 X - X - X - -
T1 HAProxy 1.4.24 IIS/7.5 X - rp - X - rp
T1 Pound 2.6 Apache/2.4.7 X - X - X - -
T1 Pound 2.6 Nginx/1.6.2 X - X - X - -
T1 Pound 2.6 IIS/7.5 X - rp - X - rp

T2 Nginx 1.6.2 Apache/2.4.7 Apache/2.2.22 X wlb - - - - -
T2 Nginx 1.6.2 Nginx/1.1.19 Nginx/1.6.2 X wlb - - - - -
T2 Nginx 1.6.2 IIS/7.5 Apache/2.4.7 X wlb - - - - -
T2 Apache 2.4.7 Apache/2.4.7 Apache/2.2.22 X wlb - - - rp rp
T2 Apache 2.4.7 Nginx/1.1.19 Nginx/1.6.2 X wlb - - - rp rp
T2 Apache 2.4.7 IIS/7.5 Apache/2.4.7 X wlb - - - rp rp
T2 HAProxy 1.4.24 Apache/2.4.7 Apache/2.2.22 X wlb rp - X rp rp
T2 HAProxy 1.4.24 Nginx/1.1.19 Nginx/1.6.2 X wlb rp - X rp rp
T2 HAProxy 1.4.24 IIS/7.5 Apache/2.4.7 X wlb rp - X rp rp
T2 Pound 2.6 Apache/2.4.7 Apache/2.2.22 X wlb rp - X rp rp
T2 Pound 2.6 Nginx/1.1.19 Nginx/1.6.2 X wlb rp - X rp rp
T2 Pound 2.6 IIS/7.5 Apache/2.4.7 X wlb rp - X rp rp

T3 Nginx 1.6.2 *Apache/2.4.7 IIS/7.5 IIS/7.5 wlb wlb - - - - -
T3 Nginx 1.6.2 *Apache/2.4.7 Apache/2.4.7 Nginx/1.6.2 X wlb - - - rp -
T3 Nginx 1.6.2 *Nginx/1.6.2 Apache/2.4.7 Apache/2.4.7 X wlb - - - - -
T3 Apache 2.4.7 *Apache/2.4.7 Apache/2.2.22 Nginx/1.6.2 X wlb - - - rp rp
T3 Apache 2.4.7 *Apache/2.4.7 IIS/7.5 Nginx/1.6.2 wlb wlb - - - rp rp
T3 Apache 2.4.7 *Apache/2.4.7 Apache/2.4.7 Nginx/1.6.2 X wlb - - - rp rp
T3 HAProxy 1.4.24 *Apache/2.4.7 Apache/2.4.7 Nginx/1.6.2 wlb wlb rp - wlb rp rp
T3 HAProxy 1.4.24 *Nginx/1.6.2 Nginx/1.6.2 Apache/2.4.7 wlb wlb rp - wlb rp -
T3 HAProxy 1.4.24 *Nginx/1.6.2 IIS/7.5 IIS/7.5 wlb wlb rp - wlb - -
T3 Pound 2.6 *Nginx/1.6.2 IIS/7.5 IIS/7.5 wlb wlb rp - wlb rp rp
T3 Pound 2.6 *Nginx/1.6.2 Nginx/1.6.2 Apache/2.4.7 wlb wlb rp - wlb rp -
T3 Pound 2.6 *Nginx/1.6.2 Apache/2.4.7 Apache/2.4.7 wlb wlb rp - wlb rp rp

Table 6.4: Tool comparison. For each tool test, a Xsymbol means the reverse
proxy tree was perfectly recovered; wlb that a Web load balancer was detected
but not the rest of the tree; rp that a reverse proxy was detected but not the
rest of the tree; and a - symbol that no reverse proxy was detected. An asterisk
before a server at layer 1 means that server was used as a reverse proxy.

142



Chapter 6. RevProbe: Detecting Silent Reverse Proxies in Malicious Server
Infrastructures

Domains IPs Root
Source All Active All Active RP Explicit Silent WLB
Alexa 10,000 9,626 13,067 11,879 2,361 (19.9%) 1,066 (45.1%) 1,295(54.9%) 2,045 (86.6%)
MD 8,512 6,172 4,097 3,528 578 (16.4%) 44 (7.6%) 534 (92.4%) 479 (82.9%)

Table 6.5: our tool Results on benign and malicious domains.

reverse proxy tree. For the remaining 8 type 3 configurations it identifies that the
target IP address corresponds to a WLB (strict problem definition) but it is not
able to recover the internal tree structure. One issue with trees of Type 3 is that
only the Max-Forwards and Explicit RP detection modules can recover multiple
RP layers. And, some programs ignore the Max-Forwards header completely, so
silent RPs at intermediate layers are challenging to recover.

Other tools. Among the other tools, Halberd identifies a WLB in the 24 T2
and T3 trees. However, it fails to identify a RP in all 8 T1 trees because there
is only a Web server and similar to our WLB detection module it requires more
than one WS to identify a RP. Htrosbif fails to completely detect Apache and
Nginx as RP, it only detects HAProxy and Pound for which it has fingerprints.
It does not detect any WLB and fully recovers 4 T1 trees. http trace.nasl fails
all tests because it only detects explicit reverse proxies and our configurations
only use silent reverse proxies. lbmap also fails to detect Apache and Nginx as
a reverse proxy in all configurations. It perfectly recovers the reverse proxy tree
for T1 and T2 trees with HAProxy and Pound at the root, and the presence
of a WLB in T3 trees with HAProxy and Pound at the root. TLHS uses the
Max-Forwards header for detection, which works well with Apache acting as RP.
Surprisingly, it also detects a RP in some T2 and T3 configurations where Apache
is not used as RP/WLB (or even used at all). This happens because the error
page titles are different. WAFW00f focuses on detecting WAFs. None of our
configurations has a WAF installed, so these detections could be considered false
positives. WAFW00f uses discrepancies to identify WAFs but that technique it
uses identifies any RP as a WAF.

Summary. The tool comparison shows that RevProbe outperforms prior RP
detection tools. RevProbe perfectly recovers the reverse proxy tree in 77% of
the configurations, and the presence of a reverse proxy (strict problem definition)
in the remaining 23%. None of the prior tools is a close competitor or a clear
winner over the others. lbmap perfectly recovers 12 trees and a WLB in other 6
configurations, but it only detects HAProxy and Pound reverse proxies. Htrosbif
perfectly recovers 4 T1 trees and a RP in 14 other configurations, but it has no
support for WLBs. And, Halberd only detect WLBs.
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Source RPs Type 1 Type 2 Type 3 Oth.
Alexa 2,361 311 (13%) 2,045 (86%) 3 (1%) 2
MD 578 98 (17%) 450 (78%) 29 (5%) 1

Table 6.6: Reverse proxy tree types identified in benign and malicious domains.

6.6.2 Live Websites

We test RevProbe on both benign and malicious live websites to compare how
they use reverse proxies. As representative of likely benign websites we use the
Alexa top 10,000 domains [186]. For malicious websites we use the immortal do-
mains list from malwaredomains.com [214] (MD). Immortal domains are domains
alive for more than 90 and less than 360 days and that Google Safebrowsing [37]
still reports as malicious. In all cases, RevProbe requests the root page of the
website. For malicious websites RevProbe uses a virtual private network (VPN)
for anonymity. The VPN has a large pool of exit IP addresses, making it difficult
to identify RevProbe’s probing.

Table 6.5 summarizes the results. For each dataset, it first shows the number
of domains tested and those that resolved to at least one IP address. Then,
the number of distinct IPs that those live domains resolved to (possibly a larger
number) and the number of those IP addresses that were active, i.e., responded
to at least one probe. Next, it shows the number of active IP addresses where
RevProbe detected a reverse proxy, how many of those root reverse proxies
were explicit and silent, and how many were load balancers.

Overall, RevProbe tests 11,879 distinct active IP addresses from Alexa and
3,528 from MD. Among the active IP addresses, RevProbe identifies 2,361 re-
verse proxies in Alexa and 578 in MD. Thus, 16% of malicious and 20% of benign
active IPs correspond to a reverse proxy. Of the malicious reverse proxies, 92%
are silent, compared to 55% for benign RPs. This shows how the vast majority
of malicious reverse proxies are silent and used to hide the servers behind them.
The fraction is significantly smaller among benign RPs, but still more than half
of benign reverse proxies are silent. This may be due to benign services also
wanting to hide their server infrastructure and to popular Web server software
(e.g., Apache, Nginx) to be silent by default when running as RP.

Of the malicious RPs, 83% are load balancers, similar to the 87% for benign
RPs. Thus, the vast majority of RPs in both malicious and benign infrastruc-
tures are used to distribute traffic among multiple servers. Figure 6.5 shows the
distribution of the number of servers that RevProbe identifies behind WLBs.
Of the malicious WLBs 89% have two servers behind, 7% have three servers,
and 3% have more than 3. The maximum number of servers behind a WLB is
6. For benign WLBs those percentages are 75% (2), 11% (3), 14% (>3), and
the maximum 30. As expected, the WLBs of highly ranked benign Websites dis-
tribute their traffic among a larger number of servers than WLBs in malicious
infrastructures.
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Figure 6.5: Number of final servers found behind WLBs.

Tree types. Table 6.6 summarizes the type of reverse proxy trees RevProbe
identifies behind the active IP addresses. The results are quite similar for Alexa
and MD domains. The most common tree is a WLB with a variable number of
servers behind (Type 2 in Figure 6.4 with varying number of servers in layer 1)
detected for 78% of the malicious and 86% of the benign active IPs. The Type 1
tree in Figure 6.4 (one reverse proxy with one server) is detected for 17% of the
malicious and 13% of the benign active IPs. The Type 3 tree in Figure 6.4 (one
WLB and a RP at layer 1) occurs in 1% of malicious and 5% of benign active
IPs. The remaining 3 trees have a root RP, a WLB in layer 1, and 2 servers in
layer 2. These results point to most RPs being the root of simple hierarchies,
predominantly T2 and T1 trees.

Web server software. Table 6.7 summarizes the Web server software that
RevProbe identifies in the nodes of the recovered trees. Overall, RevProbe
recovers the Web server type for 41% of the nodes in malicious trees and 39% of
nodes in benign trees. The most common Web server software in malicious infras-
tructures is Squid found on 40% of the nodes tagged with Web server software,
followed by Apache (20%), and Nginx (12%). In the Alexa domains, Varnish
(27%) is most common, followed by Squid (21%), and Nginx (20%).

The vast majority of servers use open source software. The most popular
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Program Alexa MD
Apache 358 (5%) 133 (8%)
IIS 51 (1%) 31 (2%)
Nginx 513 (8%) 78 (5%)
Squid 540 (8%) 269 (17%)
Varnish 699 (10%) 55 (3%)
Others 452 (7%) 98 (6%)
Null 4,090 (61%) 958 (59%)
Total 6,703 1,622

Table 6.7: Software identified running on the nodes in the reverse proxy trees
recovered by our tool.

reverse proxy software correspond to caching proxies (Squid and Varnish). This
is expected in benign infrastructures where performance is an important reason
of using reverse proxies, but surprising in malicious infrastructures where the
RP could cache sensitive information. It could happen that different types of
malicious domains behave differently in this regard, e.g., that phishing domains
are cached but exploit kit data is not.

Deanonymizations. The phpinfo module recovers the public IP address of a
final Web server of a malicious domain. It also recovers a private IP address for
12 malicious servers. For the benign domains, it recovers the public IP address
for 29 final servers and a private IP address for another 41. To confirm the
deanonymizations we connect to the 30 public IP addresses and fetch the root
page using the corresponding domain in the HTTP Host header. If the content
served is similar to the content served through the RP, the deanonymization is
confirmed. Of the 30 IPs, 13 are confirmed, 4 did not respond, 10 show an
error page, and 3 show different content. Overall, RevProbe deanonymizes 1
malicious server and 12 Alexa servers hiding behind silent reverse proxies.

Summary. Our results show that reverse proxies are common in malicious Web
infrastructures (16% of active IPs). Those reverse proxies are predominantly
silent to hide the existence of servers behind (92%). Reverse proxies are also
common in benign infrastructures (20% of active IPs) but are less often silent
(55%). In both malicious and benign infrastructures RPs are predominantly used
to load balance traffic among multiple servers (83%–87%). The vast majority of
RPs are root to simple server hierarchies, predominantly Type 2 and Type 1 trees
(95%–99%).
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6.7 Discussion

Ethical considerations. Active probing approaches send traffic to targets,
which may correspond to third-party services that have not solicited it. Thus,
some targets may consider the probes undesirable or even offensive. In addition,
the probes can potentially place a burden on the target. We take this issue
seriously and seek a careful balance between the amount of interaction and the
merits of the results. Since Web services are remote and only available as a black
box, we believe active probing approaches are required to detect reverse proxies
and the server infrastructure behind them.

We have designed RevProbe to send a small number of requests (45 by
default) to a remote target, which we believe to be a manageable load even
for small websites. The requests sent by RevProbe are all well-formed HTTP
requests. Only the not found and force proxy response modules send requests
designed to trigger an error. For our experiments with third-party Web services
we limit the force proxy error module to use a single type of incorrect request,
an incorrect HTTP method such as “GOT / HTTP/1.1” rather than “GET /
HTTP/1.1”.

Shared servers. RevProbe identifies the server infrastructure hiding behind
an IP address. In some scenarios multiple reverse proxies, at different IP ad-
dresses, may proxy to the same final servers. This can happen, among others,
with domains that resolve to multiple IP addresses and with Web services pointed
by multiple domains. Currently, RevProbe only detects whether servers iden-
tified behind different reverse proxies (i.e., target IPs) are the same if it recovers
their public IP address. We leave as future work exploring other avenues to
combine reverse proxy trees from different target IP addresses.

Incomplete trees. Our evaluation on controlled silent reverse proxy configu-
rations shows that Type 3 configurations with 2 layers of proxy servers are chal-
lenging to fully recover. Only two of our modules specifically recover sequences
of reverse proxies. As next step, we plan to explore other techniques that may be
able to detect sequences of reverse proxies, including timing-based approaches.
In general, RevProbe cannot always recover a perfect reverse proxy tree, but it
is a significant step forward from prior tools that do not specifically address the
generalized problem definition.

Combining fingerprinting. Current Web server fingerprinting tools have prob-
lems with reverse proxies as they assume an IP address corresponds to a single
server. One conclusion of this work is that Web server fingerprinting and reverse
proxy detection are best combined together. RevProbe takes a step towards
this goal, being able to recover software package information for 40% of all servers.
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However, we have not yet built a large database of program version fingerprints.
We plan to further explore this combination next.

Other protocols. In this work we have focused on HTTP communication,
but our techniques should be equally applicable to HTTPS. Active probing ap-
proaches that look at discrepancies in the traffic are also applicable to other pro-
tocols, but require the protocol grammar. For proprietary protocols (e.g., C&C)
the protocol grammar can be recovered by analyzing the network traffic [228] or
program executions [201].

Evasion. A malicious Web service can change its response based on parameters
of the client such as geographical location, User-Agent, and Referer [229, 230].
To address such cloaking, RevProbe uses a VPN when connecting to malicious
Web services, and can be configured to change its HTTP parameters including
User-Agent and Referer. To avoid detection, attackers may attempt to remove
discrepancies introduced by the reverse proxy. However, complete removal re-
quires deep understanding of the reverse proxy code and configurable options, as
well as careful configuration of the final servers. The difficulty to get all of these
perfectly right is a key component of RevProbe’s detection.

6.8 Conclusion

In this paper we have presented RevProbe, a state-of-the-art tool for auto-
matically detecting silent reverse proxies and identifying the server infrastructure
behind them. RevProbe uses an active probing approach that sends requests
to a remote target IP address and analyzes the responses for indications that the
IP address corresponds to a reverse proxy with other servers behind. When it
detects a reverse proxy, it outputs a reverse proxy tree capturing the hierarchy of
servers it detected behind the reverse proxy. When possible, the identified servers
are tagged with their software package, version, and IP address.

We have compared RevProbe with existing tools on 36 silent reverse proxy
configurations showing that RevProbe significantly outperforms them. We have
also applied RevProbe to perform the first study on the usage of silent reverse
proxies in both benign and malicious Web services. RevProbe identifies that
16% of malicious and 20% benign active IP addresses correspond to reverse prox-
ies, that 92% of those are silent compared to 55% for benign reverse proxies,
and that reverse proxies in both malicious and benign server infrastructures are
predominantly used to load balance connections across multiple servers.

148



Part III

Conclusion

149



7
Conclusion and Future Directions

I
n the last years cybercrime has become more relevant in the wild because its
revenues have become significant, due to this fact new techniques and analysis
methodologies are needed to understand this phenomenon. In this thesis we

proposed a number of significant advances for understanding cybercrime. We
have tackled the problem from two complementary points of view: the clients
that get infected and are used to perpetrate malicious actions that lead to illict
gains and the servers that are used to control and manage the infrastructure
of infected machines. Our techniques and methodologies help to understand
cybercrime has a whole, giving insights for improving a fundamental step of the
software development process, that is patching, and also support fast and precise
take-down efforts of malicious servers.

In the first part of this thesis, we have developed a new technique to asso-
ciate and analyze data from different dataset for investigating the lifecycle of
client-side vulnerabilities. We have analyzed field data passively collected on 8.4
million hosts over an observation period of 5 years, examining a total of 1,593
vulnerabilities from 10 client-side applications.

Furthermore, we have discovered two novel attacks made possible by the fact
that different programs or different versions of the same program may ship the
same copy of a piece of code (e.g., a .dll file on windows) that is vulnerable.
In this scenario the two applications have two different patching programs and
policies. Hence an attacker can leverage the window of time that opens between
the patching of the two applications to exploit the application that is not patched
yet.

We have also performed a statistical analysis of the vulnerability lifecycle. For
most vulnerabilities patching starts around the disclosure date, but the patching
mechanism has an important impact on the rate of patch deployment, auto-
updated software generally patches 1.5 times faster than the manually updated
software. However, only 28% of the patches in our study reach 95% of the vulner-
able hosts during our observation period. We also found that the median fraction
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of vulnerable hosts patched when exploits are released is at most 14%.
This suggests that there are additional factors that influence the patch de-

ployment process, in particular user education and knowledge play a key role in
this process. We divide the users into different categories (professionals, develop-
ers and security analysts) based on the applications they have installed on their
systems. Our analysis shows that developers and security analysts patch faster
than other users. Our findings will help system administrators and security an-
alysts to asses the risk associated with vulnerabilities. Moreover understanding
how vulnerabilities evolve over time can give some insights to cyber-insurance
companies that can tailor their policies for example to different user categories.

The analysys of the vulnerability lifecycle has some limitations, for example
we had to limit our analysis to 10 application and to a manageable number of vul-
nerabilities. Analyzing more vulnerabilities, more applications, and understand
whether software vendors improve their policies and solve issues like shared code
would give an updated picture of the software deployment ecosystem. This evo-
lutionary picture will help to develop new countermeasures and security policies
to protect against victim infection.

The second part of this thesis presented novel defences against malicious in-
frastructures, we have investigated more than 500 alive exploits servers over a
period of more than one year, we have milked and classified 11,363 unique mal-
ware samples from these servers. By using the classification data of the malware
and the servers configuration data we have successfully identified different cy-
bercrime operations. Furthermore we have analyzed the abuse report procedure
showing that our community needs to improve this procedure because at the
moment it does not work as it is supposed to be. With the data that we have
collected over more than one year of observations of exploit servers operation we
have created the Malicia dataset, that has been released to 64 international in-
stitutions worldwide, including companies and universities. This dataset includes
the malware that we have collected and classified (11,363 unique samples) and all
the metadata associated with the servers that were distributing those malwares.

Nonetheless, malicious infrastructures include differente typologies of servers,
not only exploit servers, for this reason we have proposed CyberProbe, a system
that is able to fingerprint and detect any kind of malicious server in the wild. We
have generated 23 fingerprints and scanned the internet looking for malicious
servers. We have identified 151 malicious servers and 7,881 P2P bots through
24 localized and internet-wide scans. Of the identified servers 75% are unknown
to existing public databases of malicious servers, CyberProbe achieves 4 times
better coverage than existing systems.

However, tools like CyberProbe and its evolution AutoProbe [87] have a
fundamental limitation, they cannot understand if the malicious server they are
probing through HTTP is a silent reverse proxy that hides the location of the final
server. To this end we have developed a new system called RevProbe a state-
of-the-art tool for automatically detecting silent reverse proxies and identify the
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server hierarchy behind them. Also RevProbe uses an active probing approach
and can easily be integrated with CyberProbe and AutoProbe to make their
detection more accurate. We have compared RevProbe with existing tools on 36
silent reverse proxy configurations showing that RevProbe outperforms them.
With RevProbe we have performed the first measurement of reverse proxy
prevalence in the wild. RevProbe identifies that 16% of malicious and 20% of
benign active IP addresses correspond to reverse proxies, 92% of the malicious
IPs are silent, compared with 55% of benign IPs. We have also observed that
reverse proxies are predominatly used as load balancers, to balance connections
across multiple servers. Our contributions to identify and enumerate malicious
infrastructures will help law-enforcement agencies, governments and researchers
to better understand cybercrime operations and to counter them with advanced
and accurate tool.

The main goals that we have pursued in the second part of this thesis are
attribution (i.e., associate malicious servers to their operation) and enumeration
(i.e., enumerate all the servers of an operation). For the first goal (i.e., attribu-
tion) a natural evolution would be to investigate which are the indivituals or the
organizations behind an operation. With respect to the second goal (i.e., enu-
meration) a future direction would be to deploy CyberProbe and RevProbe
together into a provider network in which a malicious server has already been
reported, in this way, by exploiting the provider locality property mentioned in
Chapter 5 it would be possible to eradicate all the malicious servers of a give
family from the provider network.
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